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Abstract. The safety of railway systems requires cooperation between
many interdependent subsystems. As safety responsibilities are split be-
tween these subsystems, modeling cooperation, and conditional depen-
dencies between subsystems become a central issue. This paper proposes
the safety promise assessment method (SafePAM), an iterative approach
to modeling these dependencies formally. SafePAM enriches the STPA - a
structured hazard analysis technique based on systems theory - resulting
in a formal description of dependencies provided by the promise the-
ory. Together, this yields a flexible method of iterative refinement, which
allows the embedding of novel system designs within their environment
while upholding the overall system safety properties. In contrast to previ-
ous approaches, SafePAM permits integrating conditional dependencies
within the model description without assuming pairwise independence
between conditions. We evaluate the proposed method in a case study
from the railway domain. We describe the system behavior based on
promises that allow a seamless link between domain-specific properties
and the system’s physical properties, allowing domain experts to validate
the resulting model.
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1 Introduction

Safety is a system property. In mission-critical software systems, this is often as-
sociated with complex interactions of multiple controllers and processes. System
theoretic process analysis (STPA) [14] is an emerging method to model these
interactions and judge their impact on safety. A safety-guided design process
can be built upon these foundations, systematically considering safety from the
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onset of system design. However, building executable software controllers based
on these results calls for a systematic extension of the STPA method. The clas-
sical STPA method describes a methodology for analyzing a system for safety
properties but does not prescribe a method for building a system that fulfills
these properties. Building an executable system description requires formalizing
the safety controller’s process model (controller view of its environment) and
control algorithm (behavioral patterns when the controller provides actions to
its environment).

Deriving a correct controller process model depends on environmental as-
sumptions. These assumptions are critical for the safety of the overall system.
The promise theory [2] provides a systematic treatment of these assumptions. It
allows for tracking and assessing dependencies, the dependability and stability
of individual assumptions, and their impact on safety. A promise is a statement
of behavior between agents. If the promise depends on a condition, it is called a
conditional promise.

This paper uses conditional promises to model conditional dependencies be-
tween multiple assumptions, making the causal chains explicit. These causal
chains link the behavior of multiple controllers, providing a basis for assessing if
the overall system can uphold its safety promises in the real world. Therefore,
we propose the safety promise assessment method (SafePAM) to model these
conditional dependencies formally. Its key contribution is extending STPA to
describe the details necessary to describe cooperation formally and systemati-
cally. We combine a top-down hazard analysis to generate a safety model (STPA)
with a bottom-up approach to ensure the implementation of this safety model
(formalized promises from the promise theory).

The SafePAM method exploits STPA to abstractly describe automated con-
trollers by their process model and control algorithm. Multiple controllers’ pro-
cess models and control algorithms are viewed independently by default. The
promise theory then adds explicit dependencies between the control algorithms
of multiple controllers and their environment. This is especially beneficial for
large cyber-physical systems, whose dependencies can span many controllers due
to functional and physical interactions. Since SafePAM describes a method for
systematically deriving the conditions of the analysis to be valid and provides
an approach to assessing the stability of cooperation, this differs from existing
STPA-based approaches, where the assumptions are taken as given, and the
validity of the approach fades once assumptions are violated.

We evaluate the efficacy of the SafePAM method in a case study from the
railway domain. In the next-generation train control system case study, we use
the SafePAM method to systematically model the interaction of as many as five
controllers (driver, onboard unit, braking system, trackside control, and tracks)
to constrain the train movement successfully. The conditions under which these
dependencies are valid can become quite complex to model otherwise.

The rest of the paper is structured as follows: In Section 2, we provide an

overview of STPA and the promise theory. Section 3 presents the proposed safety
promise assessment method (SafePAM). Section 4 applies the SafePAM method
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to the railway case study. Section 5 discusses the important lessons learned.
Section 6 discusses the related work. The paper is concluded in Section 7, while
hinting at the future direction.

2 Background

The SafePAM method builds upon STPA and promise theory results. The con-
cepts used from these methods are described below for the context.

2.1 STPA

STPA is a top-down safety analysis method based on systems theory. It describes
safety as emergent system behavior, including controller interactions and indi-
vidual controller failures. The concept of controllers is very general and includes
both automated systems and human controllers or organizations. Controllers en-
force controller constraints by providing control actions and receiving feedback
from their environment. The constraints are designed to prevent unsafe control
actions. Loss scenarios build upon these unsafe control actions and describe con-
crete scenarios (traces) of how the unsafe control action could occur. The control
structure can be decomposed hierarchically, allowing the controller model to be
refined to the required level of detail. SafePAM uses controller constraints and
loss scenarios as inputs.

2.2 Promise theory

The promise theory describes agent interactions as promises of intended behav-
ior. It is based on a bottom-up approach and is used to model the stability
of cooperative behavior. In SafePAM, agents are modeled after the STPA con-
trollers and can be refined to fine-grained sub-controllers if needed. Formally, a
promise is described as a tuple (S, R, b(7, x+), Tn) where S is the sender, R the
receiver, b the body of the promise and 7,, the name of the promise. The body is
parameterized by a type 7 € {4, —}, representing either a promise to give(+) or
to receive(-) and a constraint y.,, which expresses the constraint of the promise.
The promise can be made conditional on keeping another promise ¢ by another
agent. This can also be expressed in infix notation, where the arrow symbolizes
a promise, and the content of the promise body is written above the arrow. The
body consists of the actual promise p, the symbol | indicating conditional de-
pendence, and the actual condition ¢. A conjunction of multiple conditions is
denoted by separating the conditions with a semicolon.

+plc
ple,

Tt S R (1)

Stable cooperation requires a binding between a promise to give and a promise
to receive. For the sake of brevity, we will focus solely on the promises to give
(4) in the case study.
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Together, the promises form a graph, which tracks the influence of the indi-
vidual promises on the overall system behavior. An example of such a graph is
shown in figure 1. Whether a promise is kept is judged by each agent individually.

TrainPosition
Positioning

‘ -DistanceTravelled ‘

+trainC ‘ ‘ +DistanceTravelled

| -BaliseGroup | +TrainPosition ‘

‘ +BaliseGroup ‘

Fig. 1. Simplified example of a promise graph from the railway domain. Ellipsoids rep-
resent actors, while rectangles represent promise bodies between the actors connected
by the arrow.

Formally, the assessment is a mapping from promises to the interval [0, 1],
where 1 represents complete confidence in keeping the promise. For SafePAM,
this value depends on the judgment of domain experts and documented agent
behavior and dependencies.

3 Safety promise assessment method

The SafePAM uses the STPA system analysis. This consists of defining the
system boundary and purpose and performing the STPA analysis. Figure 2 gives
a graphical overview of the SafePAM approach, which is based on these central
ideas:

— Interpret STPA unsafe controller actions (which include the context of un-
safe system behavior) as loss patterns, defining behavioral patterns that the
control algorithms are designed to prevent. These unsafe controller actions
are translated into formal controller constraints, which describe invariants
on the controller behavior. STPA loss scenarios are concrete examples of
how an unsafe controller action could occur. These scenarios can be used for
acceptance tests to validate that the solution concept meets the controller’s
safety requirements.

— Build an abstract process model for the safety controller as the controller’s
view of the world, guided by the STPA hierarchical controller structure of
the overall system.

— Sub-states and all their possible dependencies are added, driven by the need
to describe and fulfill the formalized controller constraints.
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— The analyst’s assumptions are modeled using promise theory. Conditional
promises systematically link the interaction of multiple controllers, allowing
us to assess their stability and dependability. The concrete process model is
derived from this, limiting all possible dependencies in the abstract world to
those relevant to a concrete situation.

— Derive a dynamic concrete safety model for hazard assessment in real-time
from the generic abstract safety model by combining it with observed data

about the current real-time environment.
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Fig. 2. Graphical overview of SafePAM as simplified flowchart
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1. Formalize controller constraints. This step extends STPA by formal-
izing process model variables and controller constraints. It starts by selecting
a system to model in detail (usually a single controller) and a scope for the
iteration. Promise Theory enables the systematic modeling of assumptions and
conditional dependencies. The scope can be extended in later iterations. How-
ever, all promises made at the previous iterations shall be kept, possibly by a
different combination of promises.
la. Formalize process model variables. The individual controller con-
straints are derived from the unsafe control actions. The context under
which the control action is unsafe shall be formalized. All process model
variables shall have delimited, non-overlapping states. The variables used
in the context often depend on other process model variables. The condi-
tional dependence of the context on these variables is modeled as well.
1b. Model conditional dependencies using promises. The condi-
tional dependencies found in step 3a are described using promise theory.
In addition, the influence of other controllers on the internal process model
variables (transmitted through commands or feedback) is formulated as
promises. If these, in turn, depend on the behavior of other controllers,
this is modeled in the condition of the promise body.

2. Assess promises. All promises found in the previous step should be assessed
for their dependability. This may depend on knowledge about the operating en-
vironment, system specifications, domain expert judgment, etc. The assessment
results should be documented for each promise, along with supporting evidence.
In addition, the dependability assessment may change when additional informa-
tion about the dependencies becomes available later (e.g., information supplied
at runtime). For conditional promises, the dependability of the conditions pro-
vides an upper limit for the dependability of the whole promise.

This also provides an early opportunity for system validation. Domain ex-
perts may identify promises likely to be broken, and the search for evidence dur-
ing the assessment may highlight unpromised but necessary behavior or common
environmental dependencies. When expanding the scope in a new iteration, the
conditions of the promises shall also be checked to ensure they remain satisfied. If
they are unsatisfied, this may indicate that the scope change affects assumptions
within the solution concept.

3. Develop solution concepts. This step takes the found promises as inputs

and provides a structured methodology for developing solution concepts based

on these promises.
3a. Design solution concept. In this step, the desired properties of the
solution concepts are modeled. This also reflects the environmental con-
straints under which the system will operate, as informed by the assess-
ment promised in the previous step. Sometimes, choosing between different
strategies may be necessary to handle inconsistencies and promises that
are known to be unreliable. The choice of strategy should be documented
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and explained here. This is similar to documenting the architectural as-
sumptions of the solution concepts. These assumptions should be relatively
stable and change only infrequently.

3b. Model the solution concept and add it to the system model.
Here, the concrete solution concept is built. The solution concept is de-
scribed as an agent within the controller, promising the properties in step
3a. The dependencies on the environmental promises are documented, link-
ing the solution model and the environmental conditions and assumptions
under which the system was designed.

4. Verify solution concepts against the system model. Verification can
be performed by model checking the controllers against the desired behavior.
The promises from the solution concepts and the environmental promises shall
be checked. The verification conditions can be expressed, e.g., as invariants or
temporal properties.

5. Validate solution concept. Validate that the environment fulfills the
promises of the solution concepts. Domain experts (e.g., end users and system
suppliers) can be asked to assess the promises used during the development of
the solution concepts if they have not already been performed in Step 2. Visu-
alization of the solution concepts (e.g., animation) and their current reported
state and actual state may greatly aid domain expert assessment. Loss scenar-
ios found in the STPA can be used as example scenarios. As loss scenarios are
known to lead to hazards, their unfolding should be prevented by the developed
solution concepts.

6. Iterate model. Returning to Step 1, the model can be enhanced iteratively
by adding environmental assumptions or modeling additional hazardous control
actions. Care must be taken at each iteration to verify that the promises used
when developing the solution concepts of previous situations still hold. Other-
wise, the promises shall be updated, and the solution concepts will be adapted
to continue to hold under the changed scope.

4 Case study

We use a simplified model of the European train control system (ETCS) train
protection system as a case study. The fundamental purpose of such a system is
to avoid trains colliding. This requires the system to detect the presence of trains
and other obstacles within its control area. Detection may be performed by sen-
sors with fixed positions along the track or by moving sensors. For example, the
presence of trains may be determined by fixed sensors along the track-sensing
train wheelsets (i.e., track-side train detection systems). Alternatively, the train
itself may report where it believes to be within regular intervals (i.e., train po-
sition report). This section describes how the method was applied to the case
study.
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4.1 Controllers

Mowing block system. The moving block system (MBS) is the trackside control
system that assesses the risk of Movement Permission commands and object
state change requests (i.e., changing the position of a railway point). It only
grants a request if it does not result in a hazardous situation (now or in the
future) and translates it into movement authorities (MA). MBS intervenes if the
risk of a hazardous situation becomes intolerable after a movement is granted.
In addition, it sends configuration values for the controlled region to the OBU.

Train. The train is the physical configuration of train cars moving on the track,
with at least one traction unit. It can accelerate or brake but not determine its
running path. The driver and the OBU (see below) can command the brakes.
To simplify the analysis for this case study, we assume that the train consists of
a single car only.

On-board unit. The on-board unit (OBU) continuously supervises the braking
curve until the end of the movement authority (MA) and commands the brakes
if the driver brakes too late. It also continuously supervises the permitted speed
and commands the brakes if the speed is significantly exceeded. It shows the
driver the current braking curve, permitted speed, and ETCS mode. These ETCS
modes influence the split of responsibility between OBU, the train driver, and
the trackside control. For example, under full supervision mode, the MBS is
responsible for ensuring the train route is passable (i.e., railway points are in
the correct position for the route) and that no obstacles are present within the
MA. This contrasts with on-sight (OS) mode, where the driver monitors the
track for potential obstacles. Finally, when in staff-responsible mode, the driver
is responsible for monitoring the route and the track to ensure it is passable and
free of obstacles.

The OBU also requests movement authorities from the MBS. When a new
movement authority is received from the MBS, supervision is updated to the
end of the new movement authority. It also sends train position reports to the
MBS to inform them of the current train positions.

Trackside train detection. Trackside train detection (TTD) continuously super-
vises a fixed track section for the presence of vehicles. It provides feedback on
whether the track section is free or occupied by the trackside control. TTDs are
commonly implemented either by using track circuits or by axle counters. Track
circuits detect the presence of train axles by utilizing the electrical conductance
of the axles. In contrast, axle counters count the number of axes entering and
leaving the track section and declare the section free if the difference between
these numbers is zero. The trackside system can provide a command to reset the
axle counter to zero to address miscounts.

Braking. The braking system reduces train speed when commanded by the driver
or OBU. The system differentiates between service brakes for graceful decelera-
tion and emergency brakes for maximum brake performance. It also selects the
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suitable physical brake type(s) for the commanded brake deceleration (e.g., recu-
peration brake, block brake, eddy brake, etc.). Actual braking performance also
depends on the adhesion conditions on the track/wheel interface. It shall reduce
skidding and sliding as much as possible for situations with reduced adhesion
conditions.

Positioning. The positioning system measures the position of the train front
relative to fixed location balises based on the track. It detects the passing of
location balises and measures the distance traveled since reading the last valid
location reference. It also calculates the confidence interval and train speed and
determines the train running direction. This information is summarized in the
train position report and regularly sent to the trackside system via a radio link.

Track. The track provides physical guidance and steering for the train. Track
conditions (e.g., curve radius, cant deficiency, etc.) strongly influence the train’s
maximum running speed. Adhesion conditions between the track and the train
wheel are essential to limit braking performance.

4.2 Formalized controller constraints

The STPA analysis starts with defining the losses. For this case study, the focus
is on the first loss:
L-1. Loss of life or injury to people on the train

This, in turn, leads to the following hazards, where the identifier in the square
brackets refers to the linked loss.

H-1. Trains don’t maintain a safe distance from other trains. [L-1]

H-2. Train doesn’t maintain a safe distance from other obstacles. [L-1]

For the train control system, we select the following unsafe control action
found using the STPA approach as an example for further analysis:
UCA-MBS-1. MBS provides MA to the OBU when the risk of the MA inter-
secting with other trains or obstacles is intolerable. [H-1,H-2]

This unsafe control action corresponds to the following controller constraints:
C-MBS-1. MBS shall not provide a full supervision MA to the OBU when the

MA may intersect with other trains or obstacles known at the time of the MA
request. [UCA-MBS-1]

C-MBS-2. MBS shall not provide an on-sight MA to the OBU when the MA may
potentially include infrastructure elements that are not passable. [UCA-MBS-1]
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C-MBS-3. MBS shall not provide a staff-responsible MA to the OBU when the
MA may potentially intersect with the movement authorizations of other trains.
[UCA-MBS-1]

These, in turn, depend on process model inputs:

— Granted movement authorities

Reported train positions

Region between retarded train rear (min safe rear end) and advanced train
front (max safe front end)

Time of position report

Reported track occupation

— Fixed region on track

Based on these inputs, the internal process model of the MBS consists of the
following:

— Regions where train presence is known

— Regions where train presence is likely (now or in the future)

Regions where train presence is possible (now or in the future)

Regions where obstacle presence is likely (now or in the future)

— Movement authorities

— Regions where trains may move without authorization (uncontrolled regions)

For stable cooperative behavior, promise theory requires matching a promise
to give (4) with a promise to receive (—) between agents. For the sake of brevity,
this case study only lists the promises to give.

Using the process model inputs listed above to determine obstacle presence
requires modeling additional domain assumptions. The remainder of this section
describes how to model such promises.

One such assumption is that all trains within the control area report their
position at regular time intervals tReport and known accuracy. The following
promise expresses this assumption:

+reportPosition|Connection,TrainPosition,Con fig(t Report)

OBU MBS  (2)

However, this assumption is conditional on multiple other assumptions. For
example, the train must have the equipment for position reporting (i.e., an OBU)
with an established communication session. This, in turn, requires the train
to have radio signal reception and, therefore, electrical power. The following
promises express this.

+DistanceTravelled|ElectricalPowe'r

Odometer Positioning (3)
. +BaliseGroup|Electrical Power Lo .
Balise Antenna Positioning (4)
Lo 3 +TrainPosition|DistanceTravelled, BaliseGroup
Positioning OBU (5)
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In addition, information about the train position can also be obtained from
trackside train detectors (TTD). These systems are installed at a fixed location
along the tracks and detect whether a monitored section is occupied by a train
or empty. For the MBS to notice the change, this requires an established con-
nection between the TTD and MBS as well as enough time to detect the change
(tDetection):

+TrackOccupation|Connection,StateChange(tDetection)

TTD

MBS (6)

The purpose of the movement authority (MA) is to constrain the train dy-
namics within a region permitted by MBS. An additional promise is therefore
necessary to describe this behavior. We introduce MA as a separate agent to
embody this behavior:

+trainContained|respect M A

MA

MBS (7)

This has the advantage of tightly linking the information contained within the
MA to the desired behavior. However, the OBU needs environmental conditions
to be fulfilled to respect the constraints of the MA. One significant promise is
that the braking performance is sufficient to stop the train within the MA region.
This, again, can be modeled as a promise of the braking system on the train to
the OBU.

+respect M A|M A,suf ficient Brakes
OBU

+suf ficientBrakes|suf ficient Adhesion

MBS (8)

Braking OBU 9)

As promise (9) shows, sufficient adhesion between the train wheels and the
track is another requirement for sufficient braking. This depends on the physical
track conditions and is therefore modeled as a promise of the physical TrackState.

+suf ficitentAdhesion
TrackState )

OBU (10)

4.3 Assess promises

Assessing whether these dependencies hold for the given system depends on
domain knowledge.

Train position reporting. Starting with promise (2), we see the ability to deter-
mine the train position (TrainPosition) is itself conditional. The T'rainPosition
promise (5) indirectly depends through promises (3) and (4) on the availability
of Electrical Power to the Odometer and BaliseAntenna, which are located
onboard the train. Therefore, we have to assume that train position reports
could be missing if a radio hole or Electrical Power is unavailable to Odometer
or BaliseAntenna. The promise (2) to report positions regularly is violated,
necessitating the design of solution concepts with this restriction in mind. We
treat this as a possible condition that can occur at any time, as the numerical
conditional probabilities between multiple dependencies depend on the concrete
operational situation and may be unknown for the general case.
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Enforcing the movement authority. Limiting the area where the train is allowed
to run must be enforced by other means. Promise (8) shows the mechanism
within ETCS for that purpose: the train OBU promises to the trackside MBS
that the end of the movement authority will be respected. This is achieved by cal-
culating the train braking curve on-board and preventively applying the brakes
if the train driver does trigger the brakes before the relevant supervision limit
of the braking curve. To calculate the braking curve, promise (9) relating to the
assumed braking performance is required. However, sufficient adhesion between
the physical tracks and train wheels expressed by promise (10) is required to
achieve the specified braking performance.

The OBU depends on additional input to adjust for reduced adhesion condi-
tions. These inputs can either come from the MBS or the train driver. But even
then, the reduced adhesion factor does sometimes not enter the braking curve
calculation. Therefore, even a reliable promise to provide the reduced adhesion
factor is insufficient to fulfill the promise (8). The MBS will require additional
solution concepts to ensure the train remains within its allowed region in case
of reduced conditions.

Combining TTDs with train position reports. The train position reports may
be combined with reports from the track-side train detection systems to detect
non-communicating trains and reduce the time to position updates. Promise (6)
describes the information about track occupation transmitted to MBS. However,
this combination is non-trivial.

The two types of reports describe fundamentally different information at dif-
ferent times. Train position is reported as distance to a known location, while
train detection monitors a fixed section along the track and transmits the state
change after t Detection. The reports have different transmission times and trans-
mission triggers. Therefore, they can also interleave and remain inconsistent for
short enough periods. A systematic way to model and discuss these domain
assumptions with domain experts in an easily accessible way for all parties is
beneficial in such cases.

4.4 Develop solution concept.

With the promise model, the controller constraint can be restated as follows:

C-MBS-1. The MBS shall not provide a full supervision MA to the OBU when
the MA may contain regionWithObstacles.

region WithObstacles is defined as the region where a train presence (i.e., by
train position reports) is either known or is expected (i.e., due to a granted
movement authority).

To compute this concept, we must know when a train has reliably vacated
an area within an MA. Only then can this region be declared free of obstacles,
allowing the MBS system to reduce the size of the granted MA. This requires that
the vacated region always increase, as future observations may indicate obstacles
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after the region has already been declared vacant. Nevertheless, complete removal
of the vacated region is allowed to reduce an MA region.

We introduce a new agent vacatedMA Region instead of overloading the ex-
isting MBS with this solution concept. This allows a clear separation between
the dependencies of this concept and the rest of MBS.

In addition, a promise is also dependent on the concepts always (A) and until
(U) from linear temporal logic. Where there is a need to separate previous from
current states, states with a tick(’) represent the new state, while states without
represent the previous state.

+XnoTrainPresence|monotonicallyIncreasing(vacated M ARegion)

vacated M ARegion MBS

XnoTrainPresence = A(trainPresenceImplausibleUM ARegion Reduced)

A train is known to only move forward, with the running direction being
enforced by the OBU.

+runningDirection En forced| M A(runningDirection)

OBU MBS (1)
physicalTrain +Xmoving Forward|TunningDirection En forced MBS (12)
XmovingForward = trainPosition(rear)’ > trainPosition(rear) (13)

The reported track occupation and train position always describe a past situ-
ation. Under the condition that the running direction is enforced (runningDirection En forced),
the last known rear position is always in the rear of the physical train position.

+Xcon firmedRear|Connection(tDelivery>0)

knownTrainPosition MBS (14)

Xcon firmedRear = AknownTrainPosition(rear) <= physicalTrainPosition(rear)

knownTrainPosition shall then delimit the region where the train was at some
time in the past based on the information received by MBS. To keep the promise
to vacatedMA Region, it is vital that runningDirectionEn forced holds, so the
rear of the known train position moves only forward. XconfirmedRear €Xpresses
that this shall hold even if reports (of train position or track occupation) are
missing or arrive in the wrong sequence.

+increasing(vacatedM ARegion)|Xrear Moved

knownTrainPosition vacated M ARegion

XrearMoved = knownTrainPosition(rear)’ > knownTrainPosition(rear)
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This constrains the update behavior of knownTrainPosition. The rear shall
only be moved forward once it is inevitable that new reports do not invalidate
previous updates. This assumption shall guarantee that the rear may only move
forward or remain in the same position.

We know that the information we received about the train position will
only eventually be consistent. An update should, therefore, be delayed until
enough time has passed for the information to be consistent, or additional do-
main promises allow an update beforehand. Such domain promises are defined
below.

TTD +X forwardMovingOccupation | M A, (trainPresence KnownVtrainPresence Expected)

MBS

_ . ’
X forwardM ovingOccupation = state = occupied & state’ = free

= Astate = free

+Xfo7"wa7“dMovingR€a7‘|MAvOd0metC’r’

OBU MBS

X forwardMovingRear = Atime(PosReport2) > time(PosReportl)
= minSafeRear(PosReport2) > minSafeRear(PosReportl)

Implementing this promise amounts to implementing the solution concepts.
We use a formal description in the promise bodies to allow a formal verification
and validation of the solution concepts.

As the formal verification of the case study is ongoing, the following sections
give an overview of these steps.

4.5 Verify that solution concepts ensure controller constraint

Verification (i.e., is the model sound and do all invariants hold) can be performed,
i.e., model checking of the controllers against the desired behavior. The promises
from the solution concepts and the environmental promises shall be checked. The
verification conditions can be directly derived from the promises and expressed
as invariants or temporal properties.

4.6 Validate the solution behaves as expected

Validate (i.e., does the model match the end-user’s perception) that the environ-
ment fulfills the promises of the solution concepts. Domain experts can be asked
to assess the promises used to develop the solution concepts. Visualization of
the solution concepts, together with its current reported state and actual state,
may greatly aid expert assessment.
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4.7 TIterative model enhancement

The model can be iteratively enhanced by adding environmental assumptions
or modeling additional hazardous control actions. Care must be taken at each
iteration to verify that the promises used when developing the solution concepts
of previous situations still hold. If this is not the case, then the promises shall
be updated, and the solution concepts will be adapted to continue to hold under
the new promises.

5 Lessons learned

By applying SafePAM, we have successfully established solution concepts for the
MBS train protection system case study.

— We learned that to limit train movement to known regions, the concept of
MA needs to be extended with additional solution concepts to contain the
train. As shown by the assessment of the conditional promises, this depends
on other promises beyond the MBS control (sufficientAdhesion).

— Even if the MBS provides the OBU with information about the current
adhesion conditions, this information is not always used to calculate the
braking characteristics.

— We also learned under which conditions an MA can be released behind the
train and showed how this is connected to sequential promises of train posi-
tion reports.

6 Related work

Formalization of STPA. Formal descriptions of the STPA artifacts have been
proposed early on. Thomas described an extension of STPA for requirements
generation and analysis [20]. This work formalizes the process model and ad-
dresses the issue of completeness through a systematic and exhaustive state
space search. Another approach proposed by Colley and Butler is to iteratively
formalize the system requirements using the Event-B language, which supports
a refinement workflow [4]. Howard et al. also proposed to combine the analysis of
safety and security of critical infrastructure [12] and formalized the requirements
using Event-B [11]. To detect when changes in assumption may impact the STPA
analysis results, Leveson and Thomas also proposed introducing assumption-
based leading indicators [15] within the context of STPA. These indicators are
designed to detect the violation of assumptions early, which indicates a migration
to a state of higher risk and increases the likelihood of an accident.

Formal description of conditional dependencies. A well-known approach to for-
malize conditional dependencies is the Rely-Guarantee Method [16], also known
as the Assume-Guarantee method [7]. This method describes the assumptions of
each agent regarding its environment, relying on invariants. Only if the rely con-
ditions are fulfilled will the agent provide its guarantees to its environment. In
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contrast to the Promise Theory, each rely-guarantee binding assessment is con-
sidered unanimous and globally valid. In addition, partial fulfillment of bindings
is not considered in the Rely-Guarantee Method. Specific frameworks indented
for risk modeling and supporting conditional dependencies have also been pro-
posed [9, 10]. Within model-based system engineering, an approach to safety
analysis by probabilistically modeling faulty dependencies has also been pro-
posed [19]. In contrast to promise theory, faults are assumed to occur indepen-
dently and the assessment if a fault occurred is global rather than local for each
agent.

Formalization of moving block. The verification of ETCS has been studied for
some time in the formal methods community. For example, [17] discusses the
formal verification of ETCS as a case study. There are few recent surveys about
the use of formal methods for railways, in general, [8, 1] and for using the B-
method, in particular, [3]. There are several industrial Event-B models for the
safety analysis of railway systems [5, 6, 18]. Of particular relevance for our case
study is the Event-B model in [13] (inspired by [18]), which focuses on the core
safety aspect of an ETCS moving block system. This could, in principle, be
integrated into SafePAM.

7 Conclusion

This paper proposes SafePAM, a method to iteratively model and design a crit-
ical safety system based on promises. We validated the approach for a selected
subset of the safety analysis of a train protection system based on the moving
block concepts. Results show that the required domain details can be formal-
ized, and the resulting promises can describe the system in sufficient detail to
be assessed by a domain expert. The method includes a systematic validation of
domain assumptions based on promise assessment. Finally, the solution concepts
are validated based on loss scenarios.

The use case in this paper represents a simplified subset of the complete train
protection system. All relevant parts of the safety analysis must be included
to study the overall system’s real-life complexity. Therefore, in the future, we
would like to iteratively expand the model to include all relevant constraints of
the safety analysis and study the method’s behavior as it scales to a system of
real-life complexity.
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