

CLUSTER C – ROLLING STOCK ASSET MANAGEMENT: ON-BOARD AND WAYSIDE TECHNOLOGIES

As part of the FP3–IAM4RAIL project, Cluster C plays a key role in transforming the way rolling stock maintenance is managed across Europe. It is focused on developing intelligent technologies that enable real-time monitoring of train conditions, both onboard and from strategically placed trackside systems.

The FP3 initiative aims to deliver integrated European solutions that reach Technology Readiness Level 6 (TRL 6), a stage where systems are demonstrated in real-world environments. Cluster C contributes to this goal by developing and validating technologies that are not only innovative but also ready for deployment.

These advancements are being showcased under Demonstration Objective 2 (DO2), which highlights how monitoring technologies can support informed decision-making and maintenance planning. This includes redirecting trains to workshops for scheduled or rescheduled interventions, using manual processes, and advanced automated inspection systems. The objective is to reach TRL 6 by 2025, ensuring that the solutions are proven in operational settings across Europe, not just theoretical.

DO2 of Cluster C FP3

What does Cluster C include?

Cluster C is structured around three interconnected work packages (WP5, WP6, WP7), each contributing to the development of a comprehensive, intelligent asset management system for rolling stock:

WP5: Rolling Stock (on-board): Data acquisition and monitoring technologies.

This package focuses on the development of advanced technologies for data acquisition and monitoring of rail vehicles. Its objective is to design, develop, validate, and implement condition-based maintenance (CBM) solutions using machine learning algorithms and digital tools. These solutions are intended to support railway maintainers, owners, and operators in the decision-making process. The objective is to reach a TRL of up to 6.

WP6: Rolling Stock (on-board): Data acquisition, monitoring technologies, asset prognosis and feedback into operational processes.

This work package focuses on the development of technologies for the monitoring of rolling stock assets from the track. The aim is to integrate previous achievements in the railway sector with regard to on-track monitoring and to develop new applied solutions for lines with cross-border and mixed traffic. It aims to create a more complete European railway control point, including the necessary inputs for its basic specifications. The objective is to achieve a TRL of 6/7.

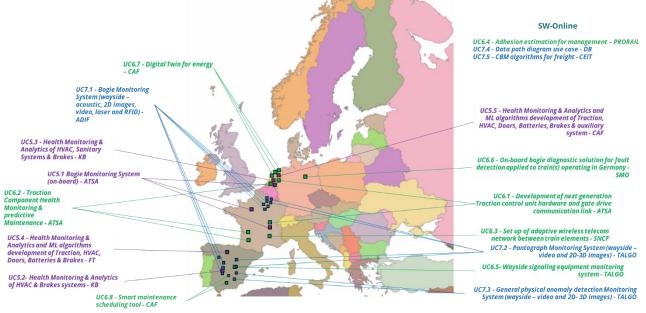
WP7: European Railway Checkpoint for mixed traffic.

This work package performs preparatory actions for demonstrations of the feasibility of proposed technical solutions and preparatory work for fully integrated demonstrators under operational conditions. It also compiles preparatory work in digital environments to achieve intermediate state demonstrators at component/subsystem or system level. The objective is to achieve a TRL of 6.

Discovering Cluster C Use Cases

Cluster C's technologies are being tested in real-world use cases (UCs) across multiple European countries. These pilots are essential to validate the solutions under operational conditions and gather key data for future deployment.

UC ID	Title	Leader	Relevant WP/DO
5.1	Bogie Monitoring System (on-board)	ATSA	WP5/WP6/DO2
5.2	Health Monitoring & Analytics of HVAC & Brakes systems	KB	WP5/WP6/DO2
5.3	Health Monitoring & Analytics of HVAC, Sanitary Systems & Brakes	KB	WP5/WP6/DO2
5.4	Health Monitoring & Analytics and ML algorithms development of Traction, HVAC, Doors, Batteries & Brakes	FT	WP5/WP6/DO2
5.5	Health Monitoring & Analytics and ML algorithms development of Traction, HVAC, Doors, Batteries, Brakes & auxiliary system	CAF	WP5/WP6/DO2
6.1	Development of next generation Traction control unit hardware and gate drive communication link	ATSA	WP6/DO2
6.2	Traction Component Health Monitoring & predictive Maintenance	ATSA	WP6/DO2
6.3	Set up of adaptive wireless telecom network between train elements	SNCF	WP6/DO2
6.4	Adhesion estimation for management	PRORAIL	WP6/DO2
6.5	Wayside signalling equipment monitoring system	TALGO	WP6/DO2
6.6	On-board bogie diagnostic solution for fault detection applied to train(s) operating in Germany	SMO	WP6/DO2
6.7	Digital twin for energy	CAF	WP6/DO2
6.8	Smart maintenance scheduling tool	CAF	WP6/DO2


Let's explore the UCs that are revolutionizing rail rolling stock maintenance and efficiency:

June 2025

	· · · · · · · · · · · · · · · · · · ·		
7.1	Bogie Monitoring System (wayside – acoustic, 2D images, video, laser and RFID)	ADIF	WP7/DO2
7.2	Pantograph Monitoring System (wayside – video and 2D-3D images)	TALGO	WP7/DO2
7.3	General physical anomaly detection Monitoring System (wayside – video and 2D- 3D images)	TALGO	WP7/DO2
7.4	Data path diagram use case	DB	WP7/DO2
7.5	CBM algorithms for freight	CEIT	WP7/DO2

UC locations across Europe

The map below represents the location of each UC, showcasing the project's broad international collaboration and impact.

UC5.2 UC5.1 UC5.3 UC5.4 UC5.5 France, Netherlands Spain Netherlands Spain Netherlands Bogie maintenance is The goal of this UC is The purpose of this UC is This UC involves This UC aims to typically scheduled to develop a sensor kit to develop a sensor kit to deploying sensors leverage sensors and based on fixed time or to retrofit a Spanish retrofit the SNG (Sprinter and advanced advanced algorithms to monitor critical mileage intervals, which high-speed train fleet. New Generation) fleet algorithms to monitor key onboard can lead to premature One or two vehicles operated in the onboard systems part replacements or will be equipped with Netherlands. One or two systems such as including HVAC, vehicles will be equipped HVAC, doors, and unexpected failures. sensors on the HVAC brakes, doors, This UC propose an (Heating, Ventilation, with sensors on the HVAC brake systems in real traction and advanced bogie and Air Conditioning) and Brake Air Supply time to enhance batteries. By monitoring system to and Brake Air Supply systems to collect maintenance detecting anomalies enable condition-based systems to collect operational data as part efficiency and system early, it enables maintenance (CBM), operational data as of a proof-of-concept reliability through targeted, conditionhelping to reduce part of a proof-ofinitiative. continuous condition based maintenance maintenance costs and concept initiative. monitoring and datato improve reliability driven insights. improve system and operational efficiency. availability.

The following table provides a summary of UC5.1 to UC5.5:

Next, the table outlines use cases UC6.1 to UC6.8:

UC6.1	UC6.2	UC6.3	UC6.4				
France, Netherlands	France, Netherlands	France	Netherlands				
This UC is a power test bench	Tomorrow's powertrains must	The goal of the UC is to	Estimation for management				
which embeds a prototype of	make use of predictive	define a multi-purpose	aims to design methods to				
the digital communication link	maintenance data to reduce	resilient adaptative wireless	estimate/measure the				
between Traction Control Unit	possession costs by optimizing	onboard telecom network	coefficient of friction (COF)				
and Gate Drive Units. The	the number of maintenance	focusing on the technical	in real-time under real				
target is to evaluate the	operations, so Intercity	and scientific objectives	operation conditions to				
capability of the ability to drive	Nieuwe Generatie (ICNG) train	related to the design and	determine at certain time				
semiconductors for traction	includes an updated traction	evaluation of a safe, secure	window. This will contribute				
purpose at the same time they	software incorporating new	and resilient solution for	(among other things) to				
are being monitored for	software application	train-to-train wireless	increasing service availabilit				
traction component health	implementing the	communications (inter	and optimal capacity.				
management.	technologies developed	train/consist and inter-					
	within the program.	carriage).					
UC6.5	UC6.6	UC6.7	UC6.8				
Spain	Germany	Netherlands	Spain				
The use of interconnected IT	This UC explores deploying a	Energy consumption is a	Transitioning from				
systems in railway transport	demonstrator of the SMO on-	major operational cost for	preventive to condition-				
enhances efficiency and safety	board bogie diagnostic (BD)	rolling stock. This UC	based maintenance adds				
but also introduces significant	solution on a regional train	involves developing a digital	complexity to scheduling				
cybersecurity risks. Modern	operating in Germany. The	twin to model and optimise	due to the dynamic and vas				
trains are vulnerable to cyber-	objective is to validate the	energy use. By combining	nature of fleet data. This UC				
attacks that could disrupt	performance of the diagnostic	theoretical models and	presents a dynamic				
services or compromise safety.	algorithms and assess how	design data, the digital twin	scheduling tool that				
The UC proposes the	the insights generated can be	will compare the optimum	integrates machine learning				
development of a device for	integrated into the	energy consumption with	insights, maintenance plans				
alert mechanisms against	maintenance process. This will	the real consumption and	and corrective actions. It				
cyber-attacks on the train itself,	be done in close collaboration	identify optimal driving	helps planners optimise tas				
both through internal systems	with the train operator and	strategies. It will give advice	scheduling by				
and from train to ground	maintenance personnel to	on the best driving strategy,	recommending maintenanc				
communications.	evaluate the benefits of CBM.	and on anomalies related to	actions based on componer				
		the energy consumption of	health, parts availability and				
		the energy consumption of	nearth, parts availability and				

Lastly, the table below summarizes use cases UC7.1 to UC7.5:

UC7.1	UC7.2	UC7.3	UC7.4	UC7.5
Spain, Netherlands	Spain, Netherlands	Spain	Germany	Spain, France
Data capture from	Based on data	Development of	By using the generic	CBM algorithms for
wayside technologies	collection from	different technologies	safety certification	anomalies detection in
(acoustic, visual, laser	Pantograph technology	such as image 2D-3D,	methodology for CBM	freight will be
and RFID). Data may	to generate an	scan or video	data paths,	developed and focused
carry information on	extensive database	recording, installed on	requirements from the	on wheel flats and axle
the health status of	that enables to	wayside to monitor	standards to the	generators. To simulate
different bogie	develop algorithms for	physical anomalies.	specific CBM UCs will	different geometries of
components. This UC	detecting failures and	These technologies	be easily transferred,	wheel flats in the
has the potential to	predicting when	allow continuous	so that IM/RU will save	different scenarios,
enhance the	maintenance will be	diagnosis on train	time in preparing the	varying running
monitoring capability	required for the rolling	elements to determine	safety certification for	conditions (running
of the WP	stock to perform	a status diagnosis in	the adaption of the	speed, vehicle load,
demonstrators (ES and	automated inspection	automatic way in real	maintenance regime.	track irregularities). In
NL), especially for	based on automatic	time, providing the		this UC axle generators
bogie health	monitoring equipment.	maintenance team		from 1 to 4 on freight
monitoring.		with a CBM action to		wagon of existing fleet
		consider.		will be monitored.

Stay tuned for more updates as we continue to test and validate these innovative solutions across Europe's rail network.

"Funded by the European Union. Views and opinion expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Europe's Rail Joint Undertaking. Neither the European Union nor the granting authority can be held responsible for them. This project has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement No. 101101966."

