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Abstract 

Even though the effectiveness of artificial intelligence in railway maintenance is 
indisputable, safety concerns still cause a restraint to enable widespread application. 
Together with experts from the railway system safety and artificial intelligence domain 
as well as research institutes, DB Fernverkehr AG develops applicable artificial 
intelligence safety requirements within the Autonomous Inspection of Rolling Stock 
(ARGO) project to allow for compliance with railway safety standards in the European 
Union. The safety argumentation is based on DIN EN 17023 and Implementing 
Regulation (EU) No 402/2013. The safety argumentation within this project follows the 
tree-shaped goal structuring notation from the safety-critical systems club. For each 
artificial intelligence cluster from the project hazard log, a dedicated safety 
argumentation tree is developed. The safety measures that are represented by the 
leaves of these trees need to be fulfilled to allow for operational use. 

Keywords: SafeAI; AI Act; Railway; Train Maintenance; CSM-RA; Visual Train 
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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the 

information is fit for any particular purpose. The content of this document reflects only the author’s view – 

the Joint Undertaking is not responsible for any use that may be made of the information it contains. The 

users use the information at their sole risk and liability. 

The content of this Deliverable does not reflect the official opinion of the Europe’s Rail Joint Undertaking 

(EU-Rail JU). Responsibility for the information and views expressed in the therein lies entirely with the 

author(s).  
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1. Introduction 

As part of high-speed train maintenance, visual inspection tasks are currently performed 

by qualified maintenance personnel based on a maximum distance driven limit. The 

corresponding process is time consuming and requires lots of manual work. Hence, DB 

Fernverkehr AG aims to partially automate this process within the ARGO project as part 

of the Europe’s Rail FP3-IAM4Rail funding program [1]. The project aims to develop a 

system that uses optical sensors to identify defects in the outer train shell and on the 

bogie. A successful implementation of the project could lead to reduced way times in 

maintenance and an increased occupational safety for maintenance personnel. 

While the detection of dimensional deviations from the nominal state is typically solved 

via classical computer vision approaches, the identification of impermissible dents, 

cracks, tears, or discoloration of components is a more challenging task. One possible 

approach is the use of machine learning anomaly detection techniques such as 

(Variational) Autoencoders or certain types of Generative Adversarial Networks that 

create an anomaly score based on a reconstruction error. The use of such deep learning 

techniques in safety relevant applications must meet regulatory requirements for 

changes in train maintenance. DIN EN 17023 [2] on the creation and modification of 

maintenance plans must be considered within the ARGO project due to the application 

of innovative methods and a change of the concept of maintenance within the current 

train maintenance plan. Regarding the risk management process, DIN EN 17023 refers 

to Implementing Regulation (EU) No 402/2013 on the common safety method for risk 

evaluation and assessment [3], which controls how safety assurance for safety relevant 

changes in the railway system can be achieved. Therefore, Implementing Regulation (EU) 

No 402/2013 is the basis for the development of SafeAI in train maintenance. 

The following sections provide a framework of AI-related safety requirements developed 

within the FP3-IAM4Rail funding program. These requirements need to be addressed 

when developing and maintaining SafeAI for maintenance purposes. Section 2 provides 

an overview about Implementing Regulation (EU) No 402/2013. Based on the structure 

of this implementing regulation, the functionality of the ARGO vehicle as well as solution 

strategy for defect detection is described in Section 3.1. Afterwards, the process of 

hazard identification and classification for the ARGO project is outlined in Section 3.2. 

Section 3.3 provides applicable risk acceptance principles for the ARGO project and 

outlines the challenges linked to the safety assurance process. Section 4 concludes. 
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2. Implementing regulation (EU) 402/2013 

2.1. System Definition 
The system definition is the first step within the risk assessment process. It serves as the 
basis for the identification and control of hazards. The system definition comprises the 
definition of the system objective, system functions and elements, system boundaries 
and interacting systems as well as a description of the system environment. 

2.2. Hazard Identification and Classification 
The proposer of the risk assessment process shall systematically identify reasonably 
foreseeable hazards for the whole system under assessment, its functions where 
appropriate and its interfaces. For this purpose, the proposer shall use wide-ranging 
expertise from a competent team. All identified hazards shall be registered in the hazard 
log. Whenever a hazard cannot be classified as broadly acceptable risk, a selection of a 
risk acceptance principle must be performed to control possible hazards. 

2.3. Risk Acceptance Principle 
The risk acceptability of the system under assessment shall be evaluated by using one or 
more of the following risk acceptance principles: the application of code of practice, use 
of a reference system or an explicit risk estimation. The application of these risk 
acceptance principles shall identify possible safety measures that make the risk(s) of the 
system under assessment acceptable. Among these safety measures, those selected to 
control the risks shall become the safety requirements to be fulfilled by the system. 

2.4. Demonstration of Compliance with Safety Requirements 
Prior to the safety acceptance of the change, fulfilment of the safety requirements 
resulting from the risk assessment phase shall be demonstrated under the supervision of 
the proposer. Any inadequacy of safety measures expected to fulfil the safety 
requirements, or any hazards discovered during the demonstration of compliance with 
the safety requirements shall lead to reassessment and evaluation of the associated risks 
by the proposer. 
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3. Safety assurance in Artificial Intelligence 

One of the major challenges within the ARGO project is the proof of safety assurance for 

subsystems which implement AI models. Representative challenges linked to the safety 

assurance in AI are explained in the following sections and follow the structure of Section 

4. 

3.1. Introduction to ARGO System Definition1 
The Underfloor Inspection Vehicle is a robot capable of performing visual underfloor 

inspection on maintenance and siding tracks. After one year of development, the vendor 

was able to deliver a first prototype for validation. The prototype is depicted in Figure 1. 

The robot is equipped with five cameras for surroundings monitoring and data 

acquisition. One of the cameras is mounted on a 360° rotatable and 180° tiltable robot 

arm. The robot can be controlled remotely via a tablet. The validation of the robots 

moving capabilities took place in different maintenance shops and on different trains. 

The revised version for full automation of inspection trips and image recordings is 

currently under development. 

 

 

Figure 1: ARGO Vehicle for Underfloor Inspection 

For future development, DB Fernverkehr AG aims to integrate the ARGO system into its 

train maintenance processes. One major challenge is the automated analysis of the 

recorded images. A possible approach to detect defects in maintenance via machine 

learning is the use of anomaly detection methods. Anomalies are data points that stand 

out from other data points in the data set and do not conform the normal behaviour in 

the data. Anomaly detection is especially useful for the described use case due to the 

highly imbalanced data encountered in train maintenance. Most of the inspection data 

does not show any defects. Hence, collecting and labeling sufficient anomaly data would 

be infeasible. 

Most existing representation-based approaches extract normal image features with a 

deep convolutional neural network and characterise the corresponding distribution 

through non-parametric distribution estimation methods. The anomaly score is 

calculated by measuring the distance between the feature of the test image and the 

 
1 The presented content does not replace a comprehensive system definition as required by 

Implementing Regulation (EU) No 402/2013 2.1.2 
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estimated distribution. An example of a torn electrical connection with a high anomaly 

score is shown in Figure 2. Notable examples for anomaly detectors that apply deep 

learning methods include (Variational) Autoencoders, Generative Adversarial Networks, 

One-Class Support Vector Machines and Deep Belief Networks. 

 

Figure 2: Anomaly Score of a torn Electrical Connection. 

3.2. Development Process for the Hazard Log 
In a first step, potential hazards of system, operational and organisational failures are 

identified based on a system definition that is developed in an iterative manner. The 

identification of hazards is based on expert knowledge from experts within and outside 

the railway domain. Potential consequences of these hazards are identified, and their 

risk level is assessed based on risk acceptance categories from DIN EN 50126-1 [4]. 

Whenever the risk level is not acceptable, hazards related to AI are considered within 

safety relevant AI clusters. The associated clusters consist of requirements for the 

software development life cycle, model development, dataset quality, synthetic data, 

image coverage, image quality, labeling, testing, information overflow, shadow 

experiment, deployment strategy and monitoring. Within these clusters, safety 

requirements are derived via the Goal Structuring Notation (GSN) (see [5] for 

explanation) as exemplified in Figure 3. 

The vendor must demonstrate compliance with these safety requirements. An excerpt 

of these requirements is presented in the following sections. 

3.3. Risk acceptance Principles for Safety Assurance in ARGO Project 
As described in Section 2, Implementing Regulation (EU) No 402/2013 distinguishes 

between the use of code of practice, application of a reference system and explicit risk 

estimation as risk acceptance principles. These principles are described in the following. 

3.3.1. Code of Practice for Automated Visual Inspection 

To present the results for the application of code of practice within ARGO, this paper 

differentiates between a Conventional Software Development Lifecycle (SDLC) and the 

Model Development Lifecycle (MDLC). 

3.3.1.1 Software Development Lifecycle 

Due to the consideration of safety relevant software components within the ARGO 

project, DB Fernverkehr AG sets high standards for the SDLC. Without a standardised 

SDLC that is coordinated between DB Fernverkehr AG and the vendor, the prerequisites 

for a safe integration into railways system might be insufficient and systematic software 
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bugs could occur. Therefore, the following paragraphs describe requirements for the 

safety assurance process to enable automated analysis for underfloor inspection. 

 

Figure 3: GSN Characterisation Operational Design Domain 

One possible approach for a standardised SDLC is the use of DIN EN ISO 13849-1 [6] 

which is harmonised under the Machinery Directive 2006/42/EC [7] and its future 

successor, the Machinery Regulation (EU) 2023/1230 [8]. DIN EN ISO 13849-1 is designed 

to demonstrate the safety of machinery for safety-related parts of control systems. 

Depending on the specified Performance Level (PL), various conditions for embedded 

and application software must be fulfilled. For the ARGO project at DB Fernverkehr AG, 

the documented requirements in this norm are too unspecific to address the complexity 

of the ARGO project. 

A possible alternative to DIN EN ISO 13849-1 is the application of DIN EN 50716 [9]. 

Whenever software for programmable electronic systems for use in control, command 

for signalling applications or on-board rolling stock is developed, the requirements from 

DIN EN 50716 must be considered. Published in September 2024, DIN EN 50716 replaces 

DIN EN 50128 and DIN EN 50657 whose implemented requirements are considered as 

compliant for pre-existing software. 

The ARGO system is neither a signalling nor an on-board rolling stock system. Yet, the 

safety department of DB Fernverkehr AG regards the innovative ARGO project as 

comparable. This is because the maintenance system can be considered as a discrete 

train sensor that checks the system integrity of safety relevant components in fixed 
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distance driven intervals. Therefore, safety requirements for the development of such 

an automated analysis system should be based on this standard. A prerequisite for 

defining relevant software requirements is the classification of the safety integrity levels 

(SIL). The SIL can be considered as the probability of a safety instrumented function (SIF) 

satisfactorily performing the required safety functions under all stated conditions within 

a stated period. Different methods to perform their classification can be found in IEC 

61508-5 [10], DIN VDE V 0831-103 [11] or Sicherheitsregelung Fahrzeuge (SIRF) of the 

German Federal Railway Authority [12]. The requirements stated in DIN EN 50716 

depend on SIL and compromise required document types for the SDLC as well as 

techniques and measures to be applied in safe software development, i.e. defensive 

programming, modular approach, design and coding standards and performance testing. 

The vendor is responsible to follow all SIL dependent requirements that are labeled as 

“mandatory” and must argue whenever requirements labeled as “highly recommended” 

are not implemented. Moreover, an independent assessor must assess the compliance 

of the SDLC with DIN EN 50716. 

3.3.1.2 Model Development Lifecycle (MDLC) 

Regarding the application of code of practice for AI models, DB Fernverkehr AG 

collaborated with a research institute [13] to investigate state-of-the-art rulebooks 

applicable for safety assurance for machine learning image processing. The analysis 

included the investigation of domain independent rulebooks as well as domain 

dependent rulebooks from the automotive, medical, aviation and rail sector. 

Furthermore, current applications of machine learning in safety-relevant areas were 

outlined by the research institute. The outcome of this research analysis suggests that 

many rulebooks are currently under development and published rulebooks tend to 

address certain topics from within the assurance lifecycle but do not provide a 

comprehensive safety assurance framework for the ARGO project. 

The most prominent example of rulebooks is the European AI Act [14] which came into 

enforcement by the European Parliament in August 2024. Beyond the risk-based 

categorisation to follow a set of obligations within the legal framework, the AI Act itself 

does not provide sufficient technical details useful for the AI safety assurance within 

ARGO. At the time of this writing, there is no final agreement on whether the ARGO 

system must be considered a high-risk AI system or a limited risk AI system. Regardless 

of the classification, requirements for providers of high-risk AI systems are already part 

of the safety requirements from the hazard log in accordance with Implementing 

Regulation (EU) No 402/2013. This finding shows the already existing linkage between 

Implementing Regulation (EU) No 402/2013 and the AI Act in the railway domain. 

3.3.2. Reference System for Automated Visual Inspection 

At the time of this writing, there is no known reference system comparable to the ARGO 

system that aims to replace visual inspection on the outer train shell and on the bogie. 

A system with similar functions and interfaces as well as similar operational and 
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environmental conditions with long-term in-use experience is not known to the authors. 

Yet, systems for maintenance assistance instead of replacing systems that pursue a 

similar goal are already in place. One example is the VR FleetCare Scanner [15] that uses 

lidar scanners and cameras to detect loose bolts, leakages, open hatches, or broken 

springs. Another example is a specially dedicated train from Schweizerische 

Bundesbahnen (SBB) instrumented with cameras to detect rail defects by using AI [16]. 

However, the system’s reliability has not been proven to an extent that allows for 

trustworthiness to replace manual inspection entirely. 

3.3.3. Explicit Risk Estimation for Automated Visual Inspection 

Due to the lack of directly applicable rulebooks as well as a reference system for the 

ARGO system, our work focused on a systematic development of safety requirements 

to allow for hazard control via explicit risk estimation. The safety requirements were 

developed together with a research institute [13] in a GSN structure (see [5]) and 

further developed by studying publications from the SafeAI research sector. The 

proposed safety requirements were discussed within a DB SafeAI expert group and 

represent a minimum set of safety requirements to be addressed when developing 

safety related applications within DB Fernverkehr AG. 

The following subsections present excerpts of clusters of safety requirements that need 

to be considered when developing safety related models for the ARGO project. Please 

note that the presented clusters only depict a subset of requirements. For a more 

comprehensive version we would like to reference to the developed but unpublished 

GSN trees. 

3.3.3.1 General AI Safety Requirements 

In accordance with the AI Act, safety requirements for the ARGO projects encompass 

high standards for data governance, technical documentation, record-keeping, and 

instructions for use. These topics are relevant for all identified clusters. 

Data governance defines requirements for training, validation, and testing data. A 

prominent example of insufficient data governance is data leakage. In data leakage, 

knowledge of the hold-out test set leaks into the training set. This could lead to an 

overestimation of the model performance which in turn could lead to safety-critical 

predictions on new data. 

A comprehensive technical documentation as well as record-keeping allows for 

traceability and reproducibility of results or improvements for future revisions. 

Furthermore, it includes a concept for change management. 

Instructions for use of the AI system can help downstream deployers to better 

understand the system and allow for human oversight. 

3.3.3.2 Shadow Experiment 

The basic principle Globalment au Moins Equivalent (GAME) from DIN EN 50126-2 states 
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that any newly introduced public transport system/subsystem or any modification to an 

existing system/subsystem should be as safe (or safer) than the existing system 

recognised as the reference system.  

To follow the GAME principle, a shadow experiment is set up to compare failure 

probabilities in the detection of defects between human versus machines. The design is 

such that for a specified and reasoned time interval, the ARGO system and the human 

worker perform the same inspection tasks simultaneously. For this time interval, 

environmental and boundary conditions must be defined. Yet, it is questionable how the 

results between human and machine can be compared. One could argue that False 

Negatives (FN) by the automation system can be compensated by True Positives (TP) of 

the ARGO system when the worker classification turns out to be wrong (FN) in a 

comparison to a defined ground truth. Additionally, one could argue that a 

compensation would only be allowed for functions with the same SIL. The design of 

potential compensation methods for FNs of the automation system needs to be 

addressed in future research. 

From an empirical perspective, it is challenging to quantify the true human performance 

in railway maintenance. Current research addressing human performance can only be 

used to a limited extent for the railway system network. Von Hinzen [17] determined 

theoretical values for the probability of human induced errors depending on the load 

situation of the worker and the type of action. This approach was further developed in 

Hammerl’s dissertation [18] to model a new, tabular model of human behavioural 

possibilities, considering the work systems of train drivers and dispatchers as well as 

their interaction. The investigation of human performance perceptions in terms of 

sensory perception and information processing capability is also part of the ATO-SENSE 

project [19], in which the requirements for an Automatic Train Operation (ATO) system 

are to be derived from human performance. The results can be the starting point for the 

evaluation of the safety of the system. 

3.3.3.3 Operational Design Domain 

To define the dimensionality of the input space in artificial intelligence, the Autonomous 

Driving System (ADS) sector has introduced the term Operational Design Domain (ODD). 

SAE J3016 [21] defines the ODD as the “[…] operating conditions under which a given 

driving automation system, or feature thereof, is specifically designed to function, 

including, but not limited to, environmental, geographical, and time-of-day restrictions, 

and/or the requisite presence or absence of certain traffic or roadway characteristics”. 

The top-level attributes differentiate between scenery, environmental conditions, and 

dynamic elements. For these top-level attributes influencing sub-attributes including 

their range of values are defined. This approach from the automotive sector can be 

transferred to the railway sector. However, when considering that the number of all 

possible tests in pairwise testing is ∏𝑛𝑖  given a test case with 𝑁 parameters {𝑃𝑖} =

{𝑃1, 𝑃2, … , 𝑃𝑁}, the range of parameters as 𝑅(𝑃𝑖) = 𝑅𝑖  and |𝑅𝑖| = 𝑛𝑖, the effort for 
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validation activities grows exponentially. Due to the exponential growth of the number 

of combinations, practical experiments alone would be too costly. An alternative is the 

application of scenario-based tests. The underlying models must approximate reality to 

meet the goals for a predefined simulation-to-reality-gap. Also, the test space can be 

reduced by reduction techniques such as Pairwise Independent Combinatorial Testing 

(PICT). Within PICT, a test set is created such that all t-wise combinations appear at least 

once in the test set (t = 2 for interactions between two attributes). Case studies have 

shown that many failures result from a single characteristic failure or a combination of 

two characteristics [22]. 

3.3.3.4 Synthetic Data 

Synthetic data is artificially generated data that simulates real data. Synthetic data is 

particularly useful when real data is rare or difficult to collect (imbalanced data). The 

advantage of synthetic data is that large quantities can be used to create diverse data 

sets that can be used to train machine learning models. Unsupervised learning 

variational auto-encoders, generative adversarial networks or diffusion models can be 

used to generate synthetic image data. These methods for generating computer-

generated methods can be supplemented by computer-based or physical methods. 

Computer-based approaches include augmentation using graphics editors. Physical 

methods include the attachment of foreign objects or the deliberate creation of damage. 

Within the ARGO project, real data of breakages is scarce. Yet, most safety-critical events 

appear in scenarios of low occurrence probability (see [23] for a description of the long-

tail problem). Therefore, the creation of synthetic datasets is essential for V&V activities 

of developed algorithms within the ARGO project. 

It is crucial to test synthetic data for conformity with real data, which is expressed by the 

simulation-to-reality gap. For this purpose, visual inspections by qualified personnel 

should be complemented by computational approaches such as image similarity metrics, 

metrics for perceptual quality and forensic classifiers. Moreover, conformity with the 

labeling guide (see section 3.3.3.5 on labeling) should be assessed. Synthetic data is 

labeled implicitly during its creation but does not necessarily follow the same labeling 

process for real data. Nevertheless, it must be ensured that all data is labeled 

consistently. If synthetic data is used for testing and training, different techniques for 

generating synthetic data should be used for training than for the test data. Otherwise, 

this could lead to overfitting regarding synthetic data and accordingly result in the test 

data not necessarily being generalisable and therefore not representative of real data. 

This would be an example of a specific form of data leakage. 

3.3.3.5 Labeling Quality 

In machine learning, the term labeling refers to the process of labeling or annotating 

data points to capture information about the observable content or category of the 

respective data point. As such, labels are intended to represent the true, observable 

attributes that can be compared with attributes predicted by models. 
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In safety related applications, crowdsourcing for labeling can only be performed when 

the qualification of the labeler is considered, i.e., most internet users would not be 

suitable candidates to assess the integrity of safety related train components. Within the 

ARGO project, qualified maintenance personnel will be responsible for the labeling 

based on a standardised labeling guide. The labeling guide will include labeling rules, the 

presentation of examples and processes for the extension and the update of the labeling 

guide. 

To test for consistency between labelers, an assessment of interrater reliability metrics 

such as Cohens Kappa or Krippendorfs Alpha could take place [24]. A low interrater 

reliability could require rework of the labeling guide, advanced training, or higher 

requirements regarding the qualification of the labeler.  

Also, labelers classifying defects should not have to decide dichotomously as this could 

lead to forced decisions. Instead, an “uncertain” label should be included. Yet, a high 

number of such labels could indicate insufficient labeling rules or insufficiently trained 

labeling personnel. 
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4. Conclusion 

The ARGO project aims to partially automate the visual inspection of German high-speed 

trains. Due to the safety-relevance of the inspection tasks, DIN EN 17023 and 

Implementing Regulation (EU) No 402/2013 must be considered. Based on this 

Implementing Regulation, a risk management system is established throughout the AI 

system’s lifecycle. Current rulebooks applicable for the railway domain are insufficient to 

cover all AI related risks from the hazard log. Therefore, DB Fernverkehr AG decided to 

develop safety requirements relevant for the AI system’s lifecycle that need to be 

considered in the automated image analysis. The development was accompanied by 

experts from the system safety and AI domain as well as state-of-the-art research. 

Safety requirements were derived from high level safety goals through the Goal 

Structuring Notation. For the operational integration of the ARGO system in the visual 

inspection tasks, these safety requirements serve as a framework to create SafeAI for 

maintenance of high-speed trains. 
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