@ [< | R@MS - 30/07/2025
2 Contract No. HE — 101102001

—urope's

Rail to Digital automated up to autonomous train
operation

D26.3 — Final Modular Platform requirements, architecture and
specification

Due date of deliverable: 31/10/2024
First submission date: 30/09/2024

Final submission date: 25/07/2025

Leader/Responsible of this Deliverable: Maik Fox, Oliver Mayer-Buschmann / DB InfraGO AG

Reviewed: Y

Document status

Revision Date Description
01 02/09/2024 First issue for internal Review
02 20/09/2024 Second issue for internal Review
03 30/09/2024 Issue for TMT Review
04 09/01/2025 Resolved review comments from JU
05 13/06/2025 Resolved review comments from MCP
06 25/07/2025 Resolved final comments from MCP

Project funded from the European Union’s Horizon Europe research and innovation
programme

Dissemination Level
PU Public X

SEN | Sensitive — limited under the conditions of the Grant Agreement

FP2-WP26-D-DBN-003-06 Page 1 of 171 25/07/2025

Contract No. HE — 101102001 e‘

Rz

—urope's

Start date: 01/12/2022 Duration: 42 months

ACKNOWLEDGEMENTS
* X %

*; This project has received funding from the Europe’s Rail Joint Undertaking
* (ERJU) under the Grant Agreement no. 101102001. The JU receives support
from the European Union’s Horizon Europe research and innovation programme
and the Europe’s Rail JU members other than the Union.

*

*
* 4 *

REPORT CONTRIBUTORS

Name Company Details of Contribution
Maik Fox DB InfraGO AG Deliverable Lead, Executive Summary,

Chapters 3, 4, 5, 8, 9, Appendix A,
Appendix F

Oliver Mayer- DB InfraGO AG Chapter 8

Buschmann
Patrick Marsch DB InfraGO AG Chapters 5, 8, Appendix D
Julian Wissmann DB InfraGO AG Chapter 8
Nikolaus Kénig Hitachi Rail GTS Chapter 6

Ignacio Alguacil INECO Chapter 3.12
Ventas
Giovanni Venturi MER MEC Chapters 7, Appendix C
Francesco Inzirillo MER MEC Chapters 1, 2, 7, Appendix C
Patrick Rozijn NS Chapters 3.8.2,6 and 8
Thomas Martin SBB Chapter 3.7.2

Sonja Steffens

Siemens Mobility

Chapter 6, Appendix B, Appendix E

Thomas Bernburg

Siemens Mobility

Chapter 6

FP2-WP26-D-DBN-003-06

Page 2 of 171

25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s
view — the Joint Undertaking is not responsible for any use that may be made of the information it
contains. The users use the information at their sole risk and liability.

FP2-WP26-D-DBN-003-06 Page 3 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

EXECUTIVE SUMMARY

Computers are ubiquitous and their number is increasing, and the railway sector is no different. A
huge amount of computing platforms is needed today, and even more will be needed in the future.
They are essential in on-board systems, trackside elements and in data centres for efficient, reliable,
and safe operation. By increasing the automation in the railway infrastructure including fully
automated trains, new requirements and expectations towards these platforms will arise and add
complexity, while the goal of safety must never be in jeopardy.

Supporting this growth in complexity and sheer number of computing systems and platforms, this
work package, supported by railway companies and industry partners, aims to define a specification
for modular platforms and deliver it to the ERJU System Pillar and future Innovation Pillar activities.
Based on the consolidated learnings of the work package’s first task and the intermediate deliverable
of the second task, this third deliverable provides the specification for the “Modular Platforms
Concept” (MPC).

The purpose of the MPC is to provide an up to SIL4 capable computing platform that enables the
decoupling of hardware and software lifecycles and their respective update cycles. The MPC allows
extensions to systems, updates, re-use of previous developments and consolidation of more
software on less hardware.

This deliverable achieves the specification of the MPC by presenting the concept itself and providing
a consolidated set of high-level platform requirements, collected from previous work, and updated to
align with ERJU work. The MPC architecture is presented, introducing three different domains to
help with the complexity of the topic: The Application-Level Platform Independence (ALPI) domain —
with a strong focus on software and runtime environments, the Hardware-Level Platform
Independence (HLPI) domain — focusing on hardware abstraction and virtualisation aspects, and the
internal and external interfaces — providing interoperability to the outside and adaptability on the
inside of the MPC. For each of the domains, a thorough discussion of its aspects and resulting
requirements are presented.

The detailed analysis of the topics also resulted in an explicit list of open points that need further
technical investigations and clarification — for example in demonstration projects — and, in some
cases, more detailed input from the ERJU System Pillar domain than currently available.

As of today, the MPC specification cannot be implemented immediately in a way that would reach
all its goals, due to the many important interchangeability details still being worked on in ERJU.
Nevertheless, together with the future results of work package 36 (the on-board platform
demonstrator), the ERJU Innovation Pillar FP2 “R2DATO” will be able to showcase its vision of
railway modular compute platforms on a solid foundation.

This deliverable concludes task 2 of work package 26. Modular certification approaches will be
discussed in task 3.

FP2-WP26-D-DBN-003-06 Page 4 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

ABBREVIATIONS AND ACRONYMS

Note: A glossary for ERJU terms can be found in chapter 3.7.2, a local glossary in Appendix F.

ALPI Application-level Platform Independence

ATO Automatic Train Operation

BTM Balise Transmission Module

COTS Commercial Off The Shelf

CCS Command, Control and Signalling

CPI Compatible Platform Implementation

DDP Deliverable Development Plan

DMI Driver Machine Interface

ERTMS European Rail Traffic Management System
ETCS European Train Control System

FRMCS Future Railway Mobile Communication System
GoA Grade of Automation

HLPI Hardware-level Platform Independence

HW Hardware

ICT Information and Communications Technology
OCORA Open CSS On-Board Reference Architecture
oT Operational Technology

Pl API Platform-Independent Application Programming Interface
POSIX Portable Operating System Interface

R2DATO Rail to digital automated up to autonomous train operation
RBC Radio Block Centre

RCA Reference CCS Architecture

RTE Run Time Environment

SCP Safe Computing Platform

SRACs Safety Related Application Conditions

SW Software

TCMS Train Control Management System

FP2-WP26-D-DBN-003-06 Page 5 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

TABLE OF CONTENTS

o] 0L VA1 Lo =T 0 =T £ 2
[N oo 00 a1 41 o 10 o] = USSR 2
EXECULIVE SUMIMEIYeeiiieiiiie et e e e e e e e e e e e e e e e e et a e e e e e e e s e e saasbraneeaaaeeas 4
ADDIeViations @Nd ACIONYMISeiiiiiiiie ettt e et e e e e bt e e e e e be e e e e asa et e e e sabeeeeenaneeeeeeanes 5
Table Of CONTENTS ...ttt sne e s 6
[o) B T U = P PP UPPPP 11
[o] 1= o] [O TSSOSO 13
L gLt oo (¥ o1 1o o PSP UU PP PP 14
R S T o o PP 14
1.2 DOCUMENT STTUCIUIE ...ttt 15
LIRS I 0 1 = (o] o 1S PRSP 16

2 Development MethOdOIOQYuuuuuiuiiiiii s 17
2.1 Deliverable ODJECHIVESoiiiiiiiii e 17
2.2 PrOCESS OVEIVIEBWoiiutiiiiiiie ittt ettt ettt ettt ekt e st e e bt e e b e e e b e e e e b e e e e ne e e nne e e nanee s 17
2.3 Existing and Relevant DOCUMENTScoiiiiiiiiiiiii e 18
2.4 Methodology For Deliverable Development ... 19

3 Modular Platforms ConcCept (MPC)........uiiiiiiiee ettt et e e e s e e e e nnnae e e e enneeeeennes 21
Tt B U] oY 0T PSP PREPT 21
A oo] o 1Y USROS P PRRUTRRRNt 22
KR] v= 1 (=T o] o [T TR 22
3.4 GOAaIS & NON-GOAISeiiiiiie ittt b e e e sb e e nnee e 22
KBRS N1 UL g g o] 1o) 1= TR 23
3.6 Known ISsues & LiMItationS..........ceeiiiiiiiiiii e 24
3.7 Alignment with ERJU System Pillar activities. ... 24
3.7.1 ERJU SP CE domain: RIS ...t 25
3.7.2 ERJU SP CE domain: GIOSSAIYcccuuiiiiiiiiiieiiiiiee ettt e e 28
3.7.3 ERJU SP CE domain: OAS ...ttt 33
3.7.4 ERJU SP TCCS dOMAINootiiiiiieiieiieeeiie ettt ettt s eeaeesseeeneesnneens 34
3.7.5 ERJU SP PRAMS dOMAINuiiiiiiiiieiieeeiie ettt snee e e sneeenneesnneens 34
3.7.6 ERJU SP Cyber Security dOmainccuuuiiiiiieiiiiciieiee et 34

BLB PRAIMSS ..ottt ettt ettt te e teeea et e bt e e et e teeenee e teeaneeeneeanteeteeaneean 34

K Tt B ¥~ | 1= PR OPUPPT 35

FP2-WP26-D-DBN-003-06 Page 6 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

B T 7= Tor U [1 Y USSP UPPT 35
3.8.3 PRAM ..ttt ettt ettt e te e eae e reeenee e bt e aneeenneeennaan 38
3.9 USEI STOMIES ...tttk ekt h e e bt e et e et e et e e e anne e 39
3.10 Operational Context and Operational SCeNariosccceeevvieeeiiiccciiiiee e 40
3.11 Intended USAQE SCENAIIOScuviiiiiiiee ettt e et e e e e e s e e e e e e s e e s eabraeeeeaaeeseannes 41
3.12 Platform Environment EXampPIes ... 42
4 Modular Platforms ReQUIFEMENTS ..o e e e ae e 44
5 Modular Platforms ArChit@CUIEcoouiiiiiiiii e 45
5.1 Modularization Archite@CIUIEcooo i 47
5.1.1 HLPI Modularization ArchiteCture ... 47
5.1.2 ALPI Modularization ArchiteCtUrecooiiiiiiiiiie e 49
5.2 ServiCe ArChITECIUIE e 50
5.2.1 High Level Service ArchiteCturecoooiiiiiiiii e 51
5.2.2 CEME and AEE Service ArchiteCture............cccooouiiiiiiiiiiiieiee e 52
5.3 Additional ASSUMPLIONSoiiiiiiiiiiii ettt e e e e e e e e e e e e e e e s s e eeeaaaeeeeannes 53
5.4 CONCIUSIONS. ...ttt ettt ettt e st e e ae e e e b e e e et et e e ne e e eneeesne e e naneeea 54
6 Hardware-Level Platform Independence (HLPI)oooiiieiiiii e 55
L I Lo (o T 0T o] o I SRR 55
LT =W 0 0] o g - 7S 55
6.2.1 FS without direct 1/O iNterfacesccuoeeiiiiiii e 55
6.2.2 FSinternal commuUNICAtIONc.cueiiiiiiiiiii e 56
6.2.3 FSHIME DENAVION ... e 56
6.2.4 VE as non-safe software without safety relevancecccooociieeiiiicciieeeeeenn, 56
6.2.5 Standardization Update Process for FS Compartmentsccccovieiieiiiiicciiieneneenn, 57
6.3 Resource PartiTloning for FS Compartments ..o 57
6.4 FS Compartment Configuration of the VE ... 57
6.4.1 Modularity and independency of VE Config for FS Compartments.............cccccceeeeen. 57
6.4.2 Compatibility at VE interface..........cooooeeiri i 57
6.5 Interface 13 and VE ArChiteCUIe............ooi oo 57
6.5.1 Hardware INdEPENAENCEuuuuiuiuiiiiiiiiiiii e annnns 58
B.5.2 CONTAINET ...ttt e e e e e e e 59
B.5.3 HYPBIVISOI ..ttt s 59
6.5.4 Hypervisor and CONtAINETcuuiiiiiiiiee e 60

FP2-WP26-D-DBN-003-06 Page 7 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's
B.5.5 SUMMAIY ...eeeiiiii ittt e e e e e e e e e e e e atb b e e e e e eeeseaaabbeeeeeaaeeeesansarreeeeaaaeas 61
6.6 Interface 12 and HW ArChItECIUIEoooi i 62
OIS T: 1] 3PP 63
6.7.1 HW related information fOor SE ... 63
6.7.2 Safe handling of SOftWare............oueiiiiiii e 68
5.8 SECUNMLY ...ttt ettt et et e e e et e e e e e e e e e e b e e e e e e e e e e e e 69
6.8.1 ERJU Security within the FS Compartmentooociiieiie e, 69
6.8.2 ERJU Security inside of the CEEoooiiiiee et 70
6.8.3 ERJU Security in own VCE as “Soft Crypto BOX”.........ccueveiiiiiiiiiiiiiieee e 71
B.8.4 CONCIUSION ..ottt ettt b ettt e et e e s e sne e nneeea 72
6.9 Availability of FuNctional SyStemSooiiiiii e 72
6.9.1 FS Runtime behavior, reaction time and inter-communicationcccceevvveeeeeeennn... 72
6.9.2 Individual failures in hardware or software of the platform.............cccccccooiiiiiiii . 72
6.9.3 Individual failures in COMMUNICAtION............coiiiiiiiii e 72
6.9.4 Availability in context of SW maintenance.............cccccooiiiii e 73
6.9.5 Geographical redUNAANCY...........cuuiiiiiiiiiieeee e a e 73
L LS Y= F= o 1 Y2 SRS 74
L I I I 1T T [Lo L] PRSP 74
6.11.1 Diagnosis of the Functional Application (FA)c.eoeeiiiiie e 74
6.11.2 Diagnosis Of the FS... ..o 75
6.11.3 DIiagnosis OF the VEoooo o 75
6.11.4 Diagnosis of the COTS HardWarecoouiiiiiiiiii e 75
6.11.5 Diagnosis of the NetWOrK.............uviiiiiii e 75
6.12 MAINTENANCE ...ttt e e et e e e et e e e e e e e e e e aaneees 76
6.12.1 System MaINTENANCEc..cooiieeeee e e e e 76
oI BB U] (o] 4 F= 1= To [(=T o 7= U 76
6.13.1 Lifecycle management for the VE...........ooo e 77
6.13.2 Spare handling of COTS Hardware.............ccoouiiiiiiiiiie e 77
L I U o] T2 2 [TH o PR 77
6.14.1 Safety @rChitECIUreooiii i 78
6.14.2 Security @rChiteCIUEoouiiiieie e 78
6.14.3 Performance, reaction time and availability...............cccoooci i, 78
6.14.4 Integration and MaINtENANCEccooiiiiii i 78

FP2-WP26-D-DBN-003-06 Page 8 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6.14.5 BUSINESS CASE ...couiiiiiiiieiiii ettt ettt 79
6.14.6 RESPONSIDIITY ... 79
6.15 CertifiCatIONeeiieeiee e e 79
6.16 Conclusion @nd OULIOOK.ueiiiiiee e e 79
7 Application-Level Platform Independence (ALPI)ooo i 81
A 111 e Yo [8 o (o o RO PP T PRSPPI 81
7.2 Cornerstones Of ALPI ... et 82
7.2.1 Main principles followed for the ALPI's definition..........c.ccccooooiiiiiiieeeee, 82
7.2.2 Previous Work as discussed iN D26.7ueiiiiiiiiieiiiee e 83
7.3 SITUCIUIE OVEIVIEW ...ttt ettt ettt e bt b e s bt e sbe e e sne e e nnee e 83
7.3.1 Common BasiC ASSUMPLIONSciiiiiiiiiiiiieieee e e e e e e e e e e e ae e 83
7.3.2 Application-Level Platform COmpoNENntsccooiiiiiiiiiiiiiec e, 86
7.3.3 Set of Deliverables for INtegrator............cooiiii e 92
T4 ALPIDEIAIIS ...ttt bttt 92
4 2 B X~ TW o] o 1o 1= SRS 92
7.4.2 ALPIl architecture and [QYers...........ooooiiiiiiiei e 92
7.4.3 Generic Functional APPliCatioNccociiiiiiiiie e 93
7.4.4 Interface [4 and RTE e e 94
745 Interface 15 @and SL........ooiiiiii e 95
7.4.6 Implementation MOEIS............uviiiiiii i a e 95
TAT CertifiCationooo e 102
TA8B SAIBY i e e 102
A e T 7= o U 41 YRR 103
A L 1 = o o1 I PP PPPP PP 103
T4 MaINTENANCE. ..ottt ettt nne e nne e 104
7.5 Collection of Topics FOr FUtUre STUAYcooiiiiiii e 104
7.6 Conclusion and OULIOOK.cueiiiiiieie e e e 105
T7.6. 1 OPEN POINTS ...ttt e e e e e e e e e e e e e e e aa b e e e e e e e e e eeenaaraeeeeaaaeas 106

8 Management, Diagnostics and Security related Interfacesccccccoovieciiiii i, 107
8.1 Overview 0N the INterfaces ..o 107
8.2 General Assumptions on the INterfacesooooeiiiiiii e 111
8.3 Requirements on the INterfaces...........uuiiiii i 112
8.4 Conclusions and NEeXt SEEPS ...cceeii i e e e e e e e e e e e 112

FP2-WP26-D-DBN-003-06 Page 9 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's
O CONCIUSIONS. ...ttt ettt ettt ekt e ekt e ekt e ettt e et et e e bt e e e abe e e sane e e nnne e e naneeena 114
RETEIENCES ...ttt e ettt e e e e bt e e e e e abe e e e e e ab e e e e e entaeeeeaan 117
Appendix A MPC REQUITEMENEScoiii ittt e e e e e e e e e e e e e s e e reeeeeaaeeas 120
Appendix B HLPI REQUIFEMENTSooiii ittt e e e e e e e e e e raeeeeeaae s 137
Appendix C ALPI REQUITEMENEScoii it e e e e e e e s e et eeaaaeeas 146
Appendix D Management, Diagnostics and Security related Interface Requirements................... 156
D.1 Common REQUIFEMENTS ...t e e e e e et e e e e e s e et ar e e e e eaeeesaaanes 157
D.2 Requirements on CEME-DIAGoooo it e e e e 158
D.3 Requirements 0N ORCHooiiiii et s 161
D.4 Requirements on MGMT-DIAG........oooo e e e e e e eeaaes 163
D.5 Requirements ON FS-UPDATE ...ttt e e e e e e e e s ee e e e e e e s annnes 165
Appendix E Collected Open Points for the MPCooviiiiiiiiie e 166
APPENIX F MPC GIOSSAIYceeiiieiieee ettt ettt e e e e e e et e e e e e e e s eanntreeeeeaaeeeaansnneeneeaaeeas 170

FP2-WP26-D-DBN-003-06 Page 10 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

LIST OF FIGURES

FIQUIe 1: ProCeSS OVEIVIEW. ...ttt ettt e e e e e et e e e e e e e e e et a e e e e e e e e e eennraneeeas 18
Figure 2: Overview of SP CE domain layer and interface structure, taken from [14]....................... 26
Figure 3: Examples for deployment scenarios, taken from [14]........cccooiiiiiii i, 27
Figure 4: Recommendation on interfaces, taken from [14] ... 27
Figure 5: Terminology Landscape (aligned with SP CE domain)ccccceeeeiiiiiiiiieecee e, 28
Figure 6: Entity relationship diagramsooiiiiiii s 33
Figure 7: Scope of ERJU System Pillar - Cyber Security domaincccccooeiiiiiiiieeiie e, 35
Figure 8: Key terms and technical specs used in the System Pillar Cyber Security domain 36
Figure 9: Hierarchy and interfaces of shared ServiCes............ccvoriiiiiiiiie e 38
Figure 10: Trackside environment for MPC.............ooiii e 42
Figure 11: On-board environment for MPC ... 43
Figure 12: The three Modular Platforms domains embedded into the overall architecture 45
Figure 13: SP CE domain interfaces mapped to the Modular Platform domains..............cccccvveeee... 46
Figure 14: Modular Platform architecture showing key components and interfaces........................ 47
Figure 15: Modularization enabled by FS Compartments on HLPIcoo i, 48
Figure 16: Example deployment of a single 2002 FS into one CEE..........ccc.cooiiiiiieiie e, 48
Figure 17: Example deployment of a 2002 FS and a 2003 FS into one CEEccccoociiiiinnnen. 49
Figure 18: Modularization enabled by FS Compartments using ALPI..............coooeiiiie i, 49
Figure 19: Installing an FA into an ALPI-CP to create @ FS CPoevviiiiiiiieeeee e 50
Figure 20: High Level MPC service arChiteCture............c..ooiiiiiiiiiiiiiee e 51
Figure 21: Service architecture endpoints in AEE for FA and PCE data collection 52
Figure 22: Aggregation of FS Compartments on same Hardware..............ccccoocieeiiiiiiei e, 55
Figure 23: Basic architecture with VE and interface 13cccccoo oo, 58
Figure 24 ContaiNer @S VE ...ttt 59
Figure 25: Hypervisor as VE ... 60
Figure 26: Hypervisor and Container @S VEcuoiiiiiiiii e 60
Figure 27: Trackside use case data centre: FS isolation by virtual machines...................ccoennnneen. 61
Figure 28: On-board use case: up to SIL4 in virtual machine, BIL in container..............ccccceeennnen. 62
Figure 29: Safety arChiteCtUre..........cooo e 64
Figure 30: CPU identification provided by NHA ... 65
Figure 31: Monotonic clock input source provided by NHA ... 66
Figure 32: CPU temperature provided by NHA ... 66

FP2-WP26-D-DBN-003-06 Page 11 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's
Figure 33: Voltage information provided by NHA ..., 67
FIQUIE 34: SECUIMNE AEVICEeeiiiiiiiee ettt ettt e e et e e e e e nb et e e e e nbe e e e e eanees 69
Figure 35: Security within FS Compartments...........cccoooiiiiiiiiiiii e 70
Figure 36: Security native iN the CEE.............oi e 71
Figure 37: Security by “Soft Crypto BOX ...t 71
Figure 38: Specifics iN @rChiteCIUrecooiiiiiiie e 80
Figure 39: High Level Process of Application Development............ccoiiiiiiiii i 83
Figure 40: Common Basic ASSUMPLIONS OVEIVIEWeviiiiiiiieiiiiiee et 83
Figure 41: Application-Level Platform Ingredients OVerviewccccooiieiiiiiiiei i 86
Figure 42: Generic Functional Application OVEIVIEWeeeiiiiiiiiiiiieeee e, 87
Figure 43: Functional Application INteractionsccooiioiiiiiiiie e 88
Figure 44: Functional Application Task interactionscccccceiiiii 88
Figure 45: ALP| categories Of SEIVICES.......coiuuiiiiiiiie e 89
Figure 46: ALPI (Pl API) OVEIVIEWeeiiiiiii ittt e e e e e s e s et e e e e e e e s eeanerneeeas 91
Figure 47: Functional Application, ALPI, RTE ... 93
FIgure 48: INterface [...t e e e e e e e s e s e e e e e e e s eantrreees 94
Figure 49: Safety Integrity ALPIINterface 15.........ccueiio i 95
Figure 50: Functional Applications, Tasks and Deployment Configurationcccccceviiiiienennnnee. 96
Figure 51: Messaging Relations between Taskscooi i 97
Figure 52: Message voting and distribUtion...............oooiiiii e 97
Figure 53: Unsynchronized vs. replica synchronized time...................c.ccco 99
Figure 54: Gateway — contribution to protocol Stack............c.occeeiiiiiiiiiii e 100
Figure 55: ALPI diagnosis-provided through RTE at CP level.........ccccovvieeiiiiiiiiieeee e, 103

Figure 56: Logical architecture around management, diagnostics and security related interfaces.

FP2-WP26-D-DBN-003-06 Page 12 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

LIST OF TABLES
Table 1: DOCUMENT STTUCIUIEcoiiiii et 15
Table 2: Modular PlatfOrms TEIMIScooiiiiiiiiiie et e e 32
Table 3: Previous work related to MPC reqUIr€mMentsccccuvvieiiii e 44
Table 4: MPC domain mapping to SP CE interfacesoooviiiiiiiiie e 45
Table 5: Fault, Error and Failure in the context of replicated tasks ..., 101
Table 6: Error detection and response for different entitiesccccooiiiiiii 101

Table 7: Entities of particular interest in the context of management, diagnostics and security related
INTEIACES. ..o 108

Table 8: Interfaces related to management, diagnostics and security internal or external to the

[o1F= 11 o] 5 1 VAU O TR S PP RURURRRON 110
Table 9: Sources, Scope and Legend for the requirements table ..o, 120
Table 10: Selected Modular Platform RequUIremMeNtscccccviiiiiee i, 136
Table 11: Collected MPC OPENScooeieeeeee ettt e e e e e e e e e e e e e e s sennraeeeeaeeeeaaanes 169
TabIE 12: MPC GIOSSAIYuuuiiiiiieeeei ittt e e e e ee et e e e e e e e e et e e e e e e e e s e asttreeeeeaeeeessasssrrreeeaeaesaaannes 170

FP2-WP26-D-DBN-003-06 Page 13 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

1 INTRODUCTION

This document, inside the framework of the R2DATO project, provides the detailed specification on
Modular Platforms developed in the Task 26.2.

The objective of the activities in WP26 are to obtain: i) a Modular Platform independent from the
applied functions, and ii) a platform that can be introduced into the railway environment on-board
and wayside.

One of the objectives of this work is to consolidate the Modular Platform definition describing its
architecture and the interactions between the different modules that compose it.

The activities that produced the document are the continuation of this work package’s existing
deliverables, previous projects such as RCA/OCORA, Shift2Rail and others. See chapter 2.3 for
details on input documents used.

The partners involved in this project have leveraged their extensive skills and expertise acquired
over the years, including their contributions to previous projects and the development of proprietary
platforms. As a result, they have collaborated to create a comprehensive summary, the details of
which are outlined in this document.

The goal followed is to define the basis for providing a Modular Platform that allows to implement
Functional Systems in a platform independent manner (HLPI), and also Functional Applications
(ALPI) so that Business Logic is agnostic as much as possible about complexity of HW, Safety,
Security and that can be used for Safe and Non-Safe functions and is applicable for wayside and
on-board systems. Furthermore, the Modular Platform enables aggregating systems of different
vendors on same COTS hardware.

Within R2DATO, the Modular Platform Concept discussed in deliverable D26.3 are relevant for
migrating existing products as well as new functionalities, due to their need of regular updates and
more advanced computational needs. These fields of applicability will need investigation in a future
phase of R2DATO, though. This work package focuses in the current phase on the use of standard
COTS components.

The work in this deliverable unifies on-board and wayside use cases as much as possible. However,
there are environmental constraints like available volume and climate conditions, leading to
differences in size and available computing resources in a typical system. In the end no major
impacts on the basic concept have been identified in this deliverable, even though on-board and
wayside realisations may choose partly different solutions depending on their specific needs and
their technical and normative constraints.

The deliverable describes the approach for a suitable Modular Platform by describing the goals and
concept in detail, presenting an updated set of high-level requirements for such a platform, deriving
an architectural basis, and detailing out three main components of the concept: application-level
platform independence, hardware-level platform independence, and necessary interfaces.

1.1 ScoPE

This document constitutes the Deliverable D26.3 “Final Modular Platform requirements, architecture
and specification” in the framework of the work package 26 of FP2 R2DATO.

The document offers a collection of Operational Requirements, Use Case, Architecture and
Functional Requirements divided into categories as indicated in Table 1.

FP2-WP26-D-DBN-003-06 Page 14 of 171 25/07/2025

Ran470

1.2 DOCUMENT STRUCTURE

Contract No. HE — 101102001

(=

—urope's

The following table outlines the document structure.

§
1

o O w >

FP2-WP26-D-DBN-003-06

Title

Introduction

Development Methodology

Modular Platforms Concept (MPC)

Modular Platforms Requirements

Modular Platforms Architecture

Hardware-Level Platform Independence (HLPI)

Application-Level Platform Independence (ALPI)

Management, Diagnostics and Security related
Interfaces

Conclusions

References

MPC Requirements
HLPI Requirements
ALPI Requirements

Management, Diagnostics and Security related
Interface Requirements

Collected Open Points for the MPC

MPC Glossary

Description

Provide an overview of the entire document.

Describe the activities performed for obtaining
this document.

Reports all the concepts that were discussed
and agreed during the activities of WP26.

Explains the sources and methodology of high-
level requirements collection.

Describes the architecture used as a basis for
this document.

This chapter describes the approach followed
for obtaining a set of hardware platform
independence principles, functions and their
interfaces.

This chapter describes the approach followed
for obtaining a set of application platform
independence principles, functions and their
interfaces.

Explains the details of internal interfaces inside
of the modular platform.

In this chapter are summarised the
achievements of the task 26.2 results and
reported in the deliverable D26.3, as well as
next steps.

Provides relevant references used throughout
the document.

Reports high-level requirements of the MPC.
Reports requirements of the HLPI.
Reports requirements of the ALPI.

Reports requirements of Management,
Diagnostics and Security related interfaces.

Reports all open points collected for future work
in the context of the Modular Platform Concept.

Reports terms introduced in this document.

Table 1: Document Structure

Page 15 of 171

25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

1.3 LIMITATIONS

No additional specific limitations to be added to those present in chapter 3.6.

FP2-WP26-D-DBN-003-06 Page 16 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

2 DEVELOPMENT METHODOLOGY

In this chapter, the methodology on how this deliverable has been developed is discussed. The
methodology section consists of four sections: i) Deliverable Objectives; ii) Process Overview; iii)
Existing and Relevant Documents; iv) Methodology for Deliverable Development.

2.1 DELIVERABLE OBJECTIVES

This deliverable is created on the basis of the guidelines as described in the Grant Agreement (GA).
From GA the Task 26.2 of WP26 has this mandate:

In this activity, based on Task 26.1, the detailed work on any specifications needed in the context
of modular platforms is performed. This would likely (subject to the agreements in Task 26.1)
include:

e The further collection and consolidation of requirements from railway applications to IT
platforms.
e The further development of the architecture of IT platforms for the future railway system.

e The further specification of the APl between (safety-critical and non-safety-critical) railway
applications and IT platforms.

e Specification of common diagnostics, orchestration, and remote update interfaces.

e Specification of common safety-related application constraints (SRACs), to the extent that
these would be needed.

The input available for the creation of this deliverable was as follows:

1. Relevant input from partner projects, mainly from System Pillar domains deliverables, was
collected, analysed and if relevant, included in the deliverable. No further input was considered
after May 2024.

2. The Deliverable D26.2, which contains what was achieved in the initial phases of task 26.2
and which this document is based upon.

3. Feedback from the “Onboard Platform Demonstator”, R2ZDATO work package 36.

2.2 PROCESS OVERVIEW

The Figure 1 shows the process followed in task 26.2 to develop deliverable D26.3.

As can be seen from the process shown in the Figure 1, the main steps that participated in the
achievement of the final document are indicated.

FP2-WP26-D-DBN-003-06 Page 17 of 171 25/07/2025

m Contract No. HE — 101102001 é

=urope's rail

> R, 5 Fgrment with SP and R2DATO SR e e
e

Internal Review Rewiew By R2DATO
by Partners THWT and 5C

Figure 1: Process Overview

2.3 EXISTING AND RELEVANT DOCUMENTS

As input to the Work Package 26 process, the state of the art was considered and deliverables from
past projects were identified and actively requested at the Work Package level. For this process,
inputs were collected from several relevant projects:

FP2-WP26-D-DBN-003-06 Page 18 of 171 25/07/2025

Computing Platform — Whitepaper from OCORA [5]
Computing Platform — Requirements from OCORA [6]

Computing Platform — Specification of the Pl API between Application and Platform from
OCORA[7]

OCORA-TWS08-030 MDCM SRS [10]

OCORA-TWS01-035 CCS On-Board Architecture [11]
OCORA-BWS02-030 Technical Slide Deck [12]

ERJU System Pillar — Computation Environment Domain [13]

ERJU System Pillar, Computing Environment — Deliverable “Recommendation on interfaces
to be standardised [14]

ERJU System Pillar, Computing Environment — Deliverable “Operational Analysis
Specification” [15]

ERJU System Pillar — Common Business Objectives [16]

@2 Contract No. HE — 101102001 e‘

—urope's

e ERJU System Pillar — Transversal Domain (not published yet)

e ERJU Innovation Pillar FP2 R2DATO, Work Package 26, Deliverable D26.1 “High level
Consolidation” [18]

¢ ERJU Innovation Pillar FP2 R2DATO, Work Package 26, Deliverable D26.2 “Intermediate
specification of the Modular Platform” [19]

o X2RAIL-3 Deliverable 8.2 [21]

To avoid further delay and ensure a viable result before the deadline M23 of WP26, the work package
team started work on the basis of these deliverable and draft documents, establishing the potential
gap with the intended WP26 results.

2.4 METHODOLOGY FOR DELIVERABLE DEVELOPMENT

The deliverable D26.3 as the successor of D26.2 can be considered as the final consolidation of
specifications for the wave one of R2DATO. This work group relies on previous deliverables e.g.,
from X2RAIL and OCORA. In parallel, inputs were also sourced through diverse SP Task 2 domains.
These became the fundamental inputs to start the process of input collection.

At the beginning of the activities a DDP (Deliverable Development Plan) was developed and agreed
by all the partners, it was followed for the D26.3 writing activities.

The work carried out in Task 26.2 involved the study of the results obtained in previous projects.

Without prejudice to the valid work carried out in the previous projects, a series of points have been
highlighted by the WP26 partners which are reported below:

e |dentify suitable solutions;

e Try to reuse experience coming from specific partners;

¢ Integrate the parts coming from previous projects that were considered stable;

e Find a compromise between complexity and feasibility;

e Try to provide solutions that do not favour a specific partner/provider;

e Be able to have an application-independent solution;

e reuse of available standard COTS products on the market, taking full advantage of the
evolution of ICT and OT technologies.

Once these activity development points have been identified, the first step was to define the
operational aspects in which the Modular Platform shall operate.

After the chapters were drafted, the workgroup followed a structured approach from the point of
drafting the chapters to finalizing of the deliverable with the required consensus and approval. In line
with the DDP the following steps illustrate this process:

1. First development stage — responsibility of partner writing the chapters;

2. Review — responsibility of partner reviewing the chapters;

3. Second development stage — responsibility of partner writing the chapters;
4. Formal review — responsibility of partner reviewing the document;
5

. Third development stage — responsibility of partner writing the document;

FP2-WP26-D-DBN-003-06 Page 19 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6. Finalized (stored in Cooperation Tool the Deliverable document D26.3) — responsibility of
partner writing the document;

As can be seen in the process described, it provided with a good collaboration among the partners
for writing and reviewing the chapters before agreeing on the finalized document.

FP2-WP26-D-DBN-003-06 Page 20 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

3 MODULAR PLATFORMS CONCEPT (MPC)

The concept for modular platforms as presented in this deliverable enables interchangeability and
maintainability for railway computing applications and the platforms they are deployed on. The
concept is agnostic to trackside and on-board use, targets COTS hardware and integrates workloads
with different criticality — basic integrity up to SIL4.

The results created by R2DATO work package 26 are based on several inputs. Previous work has
already been captured in the first deliverable [18], and an intermediate version of the concept has
been introduced in the second deliverable [19]. The basic architectural concepts, however, are taken
directly from the ERJU System Pillar Computing Environment Domain deliverables ([14], [15], see
the discussion in chapter 3.7) and are not developed in work package 26. Work package 26,
however, decided to treat all defined interfaces with similar priority for this deliverable, extending our
scope. Nevertheless, there has been and still is a constant expert exchange between work package
26 and the Computing Environment Domain.

The subchapters present the Modular Platform Concept's (MPC) purpose, scope, stakeholders,
goals & non-goals, assumptions, and known issues and limitations. The alignment with the ERJU
System Pillar activities is discussed in detail, including the glossary (see chapter 3.7.2) that has been
developed in alignment with the SP CE domain. Details on the handling of PRAMSS in MPC are
stated. Based on ERJU System Pillar input, user stories, and operational context and scenarios are
given. The intended usage for the MPC and exemplary platform environments are discussed last.

The following three chapters will discuss in detail the important puzzle pieces of the Modular Platform
Concept, namely hardware-level platform independence (HLPI) in chapter 6, application-level
platform independence (ALPI) in chapter 7 and platform management interfaces in chapter 8.

Additional terms introduced for the MPC can be found in the glossary in Appendix F.

3.1 PURPOSE

The Modular Platform Concept is an extension of the ERJU System Pillar Computing Environment
architecture proposal. The purpose of the Modular Platform Concept (MCP) — and of work package
26 — is to explore the feasibility of the following items and educate other R2DATO work packages
and the System Pillar about MPC to foster its adaptation and integration.

respective update cycles.

MPC-P02 The decoupling of software with different lifecycles, such as security related components,
services like diagnostics, base software, and applications.

MPC-P03 Providing a generic and basic framework for future Basic Integrity up to SIL4
applications.

MPC-P04 Enabling the extension of functionality to an already deployed modular platform, for
example adding ATO to an existing CCS after initial deployment.

MPC-P05 Enabling re-use. For example, a diagnostics stack, e.g. as defined in EULYNX [2], can
be used in different projects. Also, the need to deploy and maintain multiple variants of
the same function can be reduced.

FP2-WP26-D-DBN-003-06 Page 21 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

approaches (spanning hardware, consolidated systems, and software), including
functional safety applications.’

3.2 ScOoPE

The MPC is a generic approach to computing, embedded in a railway landscape. As such, it can
potentially cover wayside and rolling stock systems.

As these environments might have specific requirements towards computing systems, the following
scope limitations are necessary.

MPC-S01 Wayside and on-board are to be treated equally where possible. Where differences are
encountered, the more encompassing variant guides the definition of the MPC, with
potential simplifications stated.

MPC-S02 The MPC as defined in here is not intended to achieve full compatibility to all or even
specific existing applications.

3.3 STAKEHOLDERS
Within ERJU, there are several stakeholders for the MPC.

e The ERJU System Pillar Computing Environment domain delivering the basis and analysing
the work package 26 results

e Other ERJU System Pillar domains with interfaces towards or interest in the MPC
e The work package 26 members

e ERJU R2DATO, in particular the on-board platform demonstrator (R2DATO work package
36) as a potential specification consumer, validator, and feedback instance

e R2DATO Wave-2 work packages for the potential continuation (e.g. continuation in R2DATO,
e.g., future in demonstrators) and other prototying projects

3.4 GoALS & NON-GOALS

For this deliverable on the MPC specification, the work package defined several goals and also
explicit non-goals.

railway-grade modular platforms. Target audience: IMs, RUs, Industry. Focus questions:
Where are the pain points?

What are needs and benefits from standardization in a technical context?

What would need to be agreed on from a technical perspective to enable the concept?

between them) and suggestions how to evaluate them (potentially in R2DATO Wave-2)

" This is not going to be covered in this deliverable, but is rather the topic for the subsequent task 3 of work package 26.
The contents of this deliverable will be an input to the activity, however.

FP2-WP26-D-DBN-003-06 Page 22 of 171 25/07/2025

Rz

=

Contract No. HE — 101102001

MPC-G03

—urope's

against the stated MPC purposes with regards to: complexity, performance limitations,
technical innovation needed, ...

Goal: Shape and influence R2DATO Phase 2 with our output (future work and potential
demonstration).

Goal: Create a common reference document (this deliverable) for similar problems
currently encountered (e.g., virtualization in data centres).

Goal: Create a public reference for influencing future developments and procurement
activities.

Goal: Provide input usable for work package 26 task 3 (study on modular certification).
Goal: Provide feedback to the System Pillar Computing Environment domain.

Goal: Enable work package 36 demonstrator and demonstrators of future R2DATO
Waves to incorporate and evaluate work package 26 MPC results.

Non-Goal: Direct input for standardization.
Non-Goal: Business analysis.

Non-Goal: Direct input into the specification of work package 36 “On-board Platform
Demonstrator”, as it is not feasible from a timeline perspective.

3.5 ASSUMPTIONS

The MPC is based on several assumptions that were compiled by the work package members.

MPC-A01

FP2-WP26-D-DBN-003-06

The R2DATO Grant Agreement describes an MPC that is fully agnostic to its
environment, so that all combinations on all systems are captured. For the actual work
of this work package, the scope is assumed to be trackside and on-board systems with
independent lifecycles of software and hardware.

The MPC is based on the System Pillar Computing Environment domain architecture
concept [14], its glossary (see chapter 3.7.2) and first insights out of their work on
operational scenarios [15] as available by May 2024.

The MPC’s interfaces provide the same functionality, independent of the technologies
used. The Functional Systems state a clear demand on resources needed for their
execution (memory, processing time, 10...).

Functional Applications can assume to be free from unintended interference (from each
other, and other parts of the MPC). Rationale: Memory & instruction corruption, and
similar effects, are not allowed to happen unrecognized.

Execution of safe and non-safe functions in mixed critically conditions on the same
hardware is possible.

Standardized modular safety certification approaches enriching the MPC will be
investigated in work package 26 task 3.

Resource partitioning shall only drive availability and security requirements but not safety
requirements in the VE (Virtualization Environment). Rationale: 10 access towards the
hardware from the compartment is needed, e.g., to access an Ethernet controller.
Resources can be memory, processing time, and 10. This is true for all SIL and Bl cases.

Page 23 of 171

25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

input/output controllers for special interfaces, hardware acceleration, etc.). As such,
(external) communication is limited to IP-based interfaces.

3.6 KNOWN ISSUES & LIMITATIONS

Some aspects of the MPC are not going to be solved by this deliverable. These known issues and
limitations are listed in this section. A potential solution option is given where known.

MPC-L01 Safe reaction times are set on system level and need to be budgeted to the participating
functions that are implemented on a Modular Platform. This budgeting cannot be solved
on the Modular Platform level, as such we cannot derive a universal number for the
needed safe reaction time that is true for all possible scenarios. Timings nevertheless
must be specified for actual implementations later to enable the purposes stated for the
MPC. This information can potentially become part of the ERJU architecture, apportioned
for the individual functions (e.g., as already done in EULYNX). If new applications impose
reaction times that are beyond the scope of the MPC, a re-evaluation is necessary.
Potentially impacted components of the MPC: time stamping, voting, message passing,
and others.

Solution options: discussion in work package 26 task 3; bring issue to System Pillar (SP);
use working assumption of 0.5 up to 1 seconds; use EULYNX numbers as an initial
working hypothesis.

MPC-L02 Modular certification to enable all multi-vendor scenarios is not solved right now.
Solution options: discussion in work package 26 task 3; wait for SP PRAMS domain
results.

MPC-L03 The benefits analysis depends on potential future demonstration activities (e.g., in
R2DATO phase 2) of the MPC as presented in this deliverable.

MPC-L04 Requirements towards the platform from applications in the R2DATO and ERJU context
are missing.
Solution options: Re-visit in R2ZDATO phase 2 when application needs are clearer.

MPC-L05 Specific hardware acceleration for ML applications is excluded and for future work.

3.7 ALIGNMENT WITH ERJU SYSTEM PILLAR ACTIVITIES

The Europe’s Rail Joint Undertaking (ERJU) System Pillar (SP) Computing Environment (CE)
domain is working on modular computing environments for the railway. The domain’s goal is a
holistic top-down approach, staying agnostic to implementation details and especially towards

2 This number in isolation is not helpful for the Modular Platform specification. It is a budgeting issue from the system level
to appropriate the reaction times across participating systems. See known issue MPC-L01 in chapter 3.6 for a detailed
discussion.

FP2-WP26-D-DBN-003-06 Page 24 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

trackside and on-board differences®. So far, the domain has released two deliverables:
“Recommendation on interfaces to be standardised” [14] (referred to as “RIS” in this chapter) and
“Operational Analysis Specification (OAS)” [15]. Furthermore, the domain is maintaining the glossary
(see later in this document’s chapter 3.7.2). Both documents and the aligned glossary are crucial
inputs for the Modular Platform Concept in work package 26 and build its basis.

Other domains of relevance are the SP Transversal CCS (TCCS) domain and the SP PRAMSS
domain. The alignment is captured in dedicated subchapters.

3.71 ERJU SP CE domain: RIS

The RIS [14] derived computing-relevant user stories from the “Common Business Objectives”
provided by the System Pillar [16]. In summary, the user stories are asking for advanced functionality
not available in today’s railway- or on-board infrastructure, such as remote updates or hardware
replacement with minimal (re-)certification effort (see also chapter 3.9). The user stories were
assessed towards their benefits. Subsequently, an architecture was derived, together with a set of
five interfaces named 11 to 15 (see below in Figure 2).

The interfaces are as follows:
¢ |1: External Diagnostics, Logging, Orchestration & IT Security Interface

o IF-DIAGNOSTICS

o IF-LOGGING
o IF-ORCHESTRATION
o IF-IT-SEC

e |2: Hardware Abstraction Interface

e 13: Virtualisation Interface

e |4: Basic Integrity Platform Independence Interface
¢ |5: Safe Platform Independence Interface

In its initial planning, WP26 did not address resp. expect working on hardware and virtualization
topics (12 and 13). Nevertheless, to reach a useful description level for a Modular Platform Concept
following the input from the SP CE domain, it is necessary to include those, at least by defining
assumptions and requirements (see chapter 6 for this new topic).

Several deployment options based on the architecture and the interface definition were given as
examples. These examples are illustrated in Figure 3, showing five ways how the layers could be
used, or their functionality included into solutions spanning multiple interfaces.

In a next step, user stories were mapped to these interfaces and a feasibility assessment per story
was conducted, giving individual analyses for basic integrity and SIL applications before deriving an
overall feasibility conclusion. Individual cost assessments on all five interfaces were the next step.

3 For example, so far, the SP CE domain did not touch on on-board specifics, such as 10 needs and interfacing to
specialized hardware that would still be considered COTS, albeit not in the form of “standard servers”, as there are standard
hardware systems from some suppliers available. Another example could be Subset 147, which is Ethernet based, needed
for on-board systems in the future and likely to be supported by the same specialized COTS hardware.

FP2-WP26-D-DBN-003-06 Page 25 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 6‘

—urope's

The document ends with a conclusion on the interfaces to be standardized, based on the metrics
derived before, and is shown in Figure 4.

System of Systems

Functional Functional
System | System N
(basic integrity) - (up to SIL4)

Application
Layer

115 -Safety Platform

] [}
[]
] [
[i
i)
) i
i]
] [
[]
] [
[i
] [
[i
i)
) i
i]
] [
[]
] [
[i
i)
) i
; !
— — i |
' Independence Interface !
| —1
l Safefy |
i Layer |
: ; ’
Runtime E | ! ; | i
Environment i 14 - Basi Integrity Platfofm Indepehdence Interface |
] ' -
| i -
Computing i E:netlrme ' i § E
Environment N ; B
: : L
! T [
(beside the layers — ' 1 i =
on the right also i ¢ 13- Virtualisation Interface __________ : é?' 5
including l I mE
development tools) | i EQ
! [Virtualisation B 5
] [
i |Layer Ry
N -
i)
) i
i]
] [
i 12 - Hardware Abstraction Interface i
i)
| |
) |
| |Hardware |
] [
¢ |Layer |
) |
: :

Figure 2: Overview of SP CE domain layer and interface structure, taken from [14]

FP2-WP26-D-DBN-003-06 Page 26 of 171 25/07/2025

PR

2DATO

Contract No. HE — 101

102001
=urope's rail

A >]
i & &
N . & &
58 & F
2 o\
\@l‘ b@ s ey q%'@ <& ﬁ@“
@"‘ Q(\Q/ Q-\(\ N &8 \bg\
) o' & & CLaPRY)
o & N & &
\%‘\o@& g\i’i‘)&bb ‘-9-\%'1@‘9 “\fo‘\b@t\\% T\usf::;d
SOEN & 6‘\ > G a@
&8 & & . E ¥
\,0;}@ ‘\‘}.acf’ o & N
System of Systems
I Functional Functional Functional Functional Functional i
| System | System Il System Iil System IV System V !
[Supplier 1] [Supplier 3] [Supplier 4] [Supplier 5] [Supplier 6]
i Applicalion Solution*! Solution*!
! Layer [Supplier 4] [Supplier 6]
i . | sotuion” Solution"!
| 15: safety Platform Independence Intertace | 1suppiier3) @ [Supplier 5]
| satety soluson’?
| Layer [Supplier 1] ! |
' 14: Basic Integrity Platform Independence Interface {} {}
: LTI T, i e B FW .
i Auntime el E8228| sowen |i EYEEE| souon® §4228] souson EHEE8(soumon®
! Layer HE28% i 2| suppiiers) || E523EF| (suppiiers S5232| [supplierd] G528 | |supplierd]
H VAESE v E ! ¢'E:‘“£ ;g:,‘,s ‘-E:_.s
] 288" 2 : =58 =83 =83
13- virtualisation Intertace {} {} {} @ @
! Virtualisation Solution
i Layer [Supplier 2]
12: Hardware Abstraction Interface
i Hardware Solution
Layer [Possibly muitiple suppliers] :
1 . . s .
) In case the box implements a safe function, it includes a safety layer that may be proprietary.
2)
) This box could implement an existing legacy function or a new function.
3 . .
) This box implements a RTE and safety layer and exposes 14 and 15.
4
) In case the box implements a safe function, it would use 15, otherwise it would use 14
Figure 3: Examples for deployment scenarios, taken from [14]
Costs related to standardizing this interface Comparative Level of Overall
(d to further evolving proprietary interface) Need Controversy Recommendation
c
c =) o5 © 2 =
8 E < o5 [
3 s 15 ﬁ 55 o E o
= E =] § k- =5 9 % 2
= g 25 — ® 2 & &
I @ = o2 [c o
2 a 2 8= i 2s -.d_’ & 2
@ E 2 ICET o= 5= <«
External Diagnostics,
Logging, Orchestration and IT . D Broad consensus .::"L'::L
Security Interface (I1)
Hardware Abstraction " Definitely
wae (T W e || e |z
Controversy on
" Specify and investigate
Virtualisation Interface (13) D . D D D [‘ . High feasibility and business
s feasibility in IP
Controversy on Further investigate
Basic Integrity Platform Medium feasibility and case
Independence Interface (14) case intP
Safety Platform Independence Low - Large controversy on Further investigate
e and case
Interface (I5) Medium case inIP

. Lower

1 Slightly
lower

Slightly

Medium higher

. Higher

*Note: As indicated in chapter 6, 14 and I5 become mandatory for many user stories in
case 13 is not available. For |5, the comparative need is low if 13 is available, or
mediumn if 13 is not available.

Figure 4: Recommendation on interfaces, taken from [14]

FP2-WP26-D-DBN-003-06

Page 27 of 171

25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

The recommendations shown in Figure 4 highlight the need of “feasibility investigations in IP” as now
taken out by work package 26. Even if there are different levels of “comparative need” defined, work
package 26 has taken a comprehensive view on all stated interfaces for the purpose of this
deliverable. The business case investigation mentioned is not considered, see MPC-G10.

3.7.2 ERJU SP CE domain: Glossary

The goal of the Modular Platforms Glossary is to establish a common understanding of the terms
used in this document and within the context of modular computing platforms in ERJU. This ongoing
process of alignment and term definition is informed by our previous deliverables D26.1 [18],
D26.2 [19], and the SP CE domain Glossary (as found in [15]). In cases where we were not aware
of an existing definition, any additional content included here should be considered as input to the
SP CE domain and other relevant areas.

We recognize the alignment and development of a comprehensive glossary as a crucial activity for
the successful implementation of modular platforms.

The diagram presented below showcases the essential components of the domain-specific
terminology employed in describing Modular Platforms. These terminologies adhere to the
definitions outlined by the System Pillar Computing Environment Domain. To provide a
comprehensive representation, the diagram incorporates two representations from the SP CE
domain. It includes the interfaces between different layers and also highlights the connection to the
central management system(s). By incorporating these elements, the diagram offers a holistic view
of the key components and their relationships within the Modular Platforms framework.

FS-1(1) in 3 2002 configuration

CP-1(1) CP-2(1)
Ap tio N == = = FA-1{1 = -]
DpRco l.—Am[A] rAY-Z[A]“.-A:-o[A] 5368 |FAT-1[§|]“FA:-z{B]”FAT-a[a]

Layer i
Apphication-Leve = ' ‘ 15 ‘
Platform Independence =
(ALPD Safety SE-1(1)

Layer -

B 14

Runtime RTE-1 (1) RTE-1(2)

Layer
Hardware-Level (] T ol Comaiing Elamont 2 il Cormpuen EXSract 3 o s "
Platform Independence — Bl A = —_— T if
(HLP1 Virtualisation Cl‘ Wamary J: vMamary D

Layer g A A ¢ 7x o B

SO i e % ! 7 MEA(2)
o F—7 : X £ S
n - N 7 2 Xk i
Hardware Memory Cores Memory Cores
v Physical Computing Element 1 Physical Computing Element 2
—

Figure 5: Terminology Landscape (aligned with SP CE domain)

Note: In a real-world scenario, it is important to consider the interfaces between different functional
systems, commonly referred to as “I0™ interfaces. These interfaces facilitate communication and
interaction between various systems. However, for the sake of simplicity, the diagram provided

410 is written as capital letter T and a zero 0.

FP2-WP26-D-DBN-003-06 Page 28 of 171 25/07/2025

EQEDA TO Contract No. HE — 101102001 e‘

—urope's

focuses on illustrating a single functional system and does not include depictions of interfaces
between different functional systems. Furthermore, it does not show all variants for mixed criticality.
The diagram above utilizes a specific notation to represent instances and replicas:

e The letters in the diagram represent the abbreviations for each corresponding entity. To
understand the abbreviations used, please refer to the table provided below.

e Each abbreviation is followed by a hyphen and a number, which serves to differentiate
between different kinds of the same entity.

¢ Instances of an entity are denoted by round brackets enclosing a number.

¢ Replicas of an entity, whether for safety or availability purposes, are denoted by square
brackets enclosing a letter.

This notation enables clear identification and distinction of entities, instances, and replicas within the
diagram.

Examples:
CP-1(1): The first instance of Compartment kind one
RTE-1(2): The second instance of Runtime Environment kind one

FAT-2[B]: The second replica of Functional Application Task kind two

The table below contains “update notes” to the definitions that were shared with the SP CE domain.

Term Abbreviation Definition
Application AAE The Application Execution Environment refers to the combination
Execution of Runtime Environment and Safety Environment.

SQyIErment Update Note: The SE is optional if it's only a BIL application.

Application Layer AL The Application Layer contains Functional Applications that
constitute Functional Systems.

Basic Integrity 14 The Basic Integrity Platform Independence Interface 14 (Interface

Platform 4) is used to perform a non-safety related platform independence

Independence with the applications. In other words, this API is an interface

Interface limited to non-safety functionalities between runtime environment

and applications.

Compartment CP A Compartment is a consistent, integrated entity comprising
exactly one Runtime Environment Instance, Safety Environment
Task Replicas of at most one Safety Environment, and Functional
Application Task Replicas of its respective Functional
Applications. It can be deployed on either a Physical or a Virtual
Computing Element.

Compartment CEE The Compartment Execution Environment refers to the

Execution combination of Physical Computing Element and Virtualization

Environment Environment.

Computing Element | CE The Computing Element provides physical or virtual compute
resources.

FP2-WP26-D-DBN-003-06 Page 29 of 171 25/07/2025

@2 Contract No. HE — 101102001 6‘

—urope's

Abbreviation Definition

External Diagnostic, |1 The External Diagnostic, Configuration & Orchestration, and IT
Logging, Security Interface 11 (Interface 1) comprises communication-
Orchestration, and based interfaces between rail systems and central infrastructure
IT Security components (Shared Services) such as diagnostics, IT-security
Interface(s) services, and remote update.

Functional FA A Functional Application is a comprehensive set of self-contained
Application software functions, assumed to be provided as one product by a

single vendor. Depending on its role in the overall function
provided by the Functional System, it has a specific SIL (BIL up
to SlIL4) assigned (in-line with total FS SIL definition).

Update Note: The technical definition of FA should not make
assumptions on the sourcing (e.g., being a product of a vendor).

Functional FAT A Functional Application Task implements part of the functionality

Application Task provided by a Functional Application. Depending on its role in the
overall function provided by the Functional Application, it has a
specific SIL assigned (in-line with total FA SIL definition). It may
run replicated in multiple Compartments as FA Task Replicas.

Functional System FS A Functional System is a comprehensive set of self-contained
Compartments, assumed to be provided as one product by a
single vendor. Depending on its overall function, it has a specific
SIL assigned.

Update Note: The technical definition of FA should not make
assumptions on the sourcing (e.g., being a product of a vendor).

FS Deployment FSDR The FS Deployment Rules comprises all necessary information

Rules for deploying the respective Functional System onto specific
approved Compartment Execution Environment(s). These
deployment rules are compiled as part of the FS integration
process and are part of each integrated, tested and
certified/approved Functional System along with its FS
Compartments and all necessary approval documentation.

Hardware 12 The Hardware Abstraction Interface 12 (Interface 2) provides an
Abstraction abstraction of all technology layers above from the specific
Interface hardware used below, enabling easy replace ability of commercial

of-the-shelf hardware procurable from a well-sized market of
hardware vendors.

Note: This is not really an interface, but rather a compatibility list
of allowed hardware incl. CPU, memory, etc.

Hardware Layer HL The Hardware Layer contains the actual Physical Computing
Elements providing the compute resources to the platform.

Instance INS An Instance is a specific realization of any entity.

Update Note: “instantiation” could be used instead of “realization”.

FP2-WP26-D-DBN-003-06 Page 30 of 171 25/07/2025

Rz

Contract No. HE — 101102001

Abbreviation

(=

—urope's

Definition

Operational
Interfaces

Orchestration
Interface

Physical Computing
Element

Replica

Runtime
Environment

Runtime Layer

Safety Environment

Safety Environment
Task

Safety Layer

Ol

PCE

REP

RTE

RL

SE

SET

SL

FP2-WP26-D-DBN-003-06

The 10 is the sum of all operational interfaces used from

Functional Systems (as e.g. an RBC) to communicate with other
Functional Systems (as e.g. an IXL). Examples for these set of
interfaces are the Eulynx Interfaces (SCIl-xx) or interfaces like
EuroRadio or TSI-standardized interfaces.

This interface is used to manage (monitor, control, diagnose,
configure) the virtual computing environments. It only exists if a
Virtualisation Interface is present. Ol is part of I1.

Update Note: The Orchestration Interface as described here is not
part of I1 in the way that MPC and Shared Services are using the
term.

The Physical Computing Element refers to the physical device
providing compute resources.

A Replica is a specific realization of any entity in a cluster of peers
used for composite fail safety and/or availability. Replicas of the
same entity always run in distinct Compartments deployed to
distinct Computing Elements.

Update Note: “instantiation” could be used instead of “realization”.

The Runtime Environment refers to the software needed to
provide the services of the Runtime Layer in a
single Compartment.

The Runtime Layer refers to the system services (e.g., application
and computing resource orchestration, monitoring of the
Functional Applications and the Application Execution
Environment, tracing and logging, communication services that
are not related to safety, security means incl. authentication,
encryption, key storage, etc.) and the communication stack for
information exchange between Functional Applications running
on the same Computing Environment and with external entities. It
may also include an operating system.

The Safety Environment refers to all Safety Environment Tasks
needed for a Functional System.

A Safety Environment Task implements part of the functionality
provided by a Safety Environment. Depending on its role in the
overall function provided, it has a specific SIL assigned (in-line
with total SE SIL definition). It may run replicated in multiple
Compartments as SE Task Replicas.

The Safety Layer implements all the technical safety principles
related to fulfilling the requirements of EN 50126, EN 50716, EN
50129, EN 50159 (e.g., composite fail safety, fault tolerance,
voting mechanisms, redundancy mechanisms for availability,
safety communication layers etc.) that are needed to enable the
execution of Functional Applications up to SIL4.

Page 31 of 171

25/07/2025

Ran470

Abbreviation

Contract No. HE — 101102001

(=

—urope's

Definition

Safety Platform 15 The aim of introducing Safety Platform Independence Interface 15

Independence (Interface 5), is to be able to implement platform independent Safe

Interface Functional Applications (up to SIL4) i.e., applications, based on a
generalized abstraction between the application logic and the
system interfaces, will run unchanged on different platform
implementations.

Virtual Computing VCE The Virtual Computing Element refers to virtually provided

Element compute resources with computing resource guarantees.

Virtualisation VE The Virtualisation Environment contains all software needed

Environment to provide (multiple) Virtual Computing Elementson a
single Physical Computing Element.

Virtualisation 13 The Virtualization Interface 13 (Interface 3) is used to provide a

standardized interface above the virtualisation layer so that
applications or higher platform layers are independent of a
specific implementation of the computing hardware.

Interface

Virtualisation Layer | VL The Virtualisation Layer contains mechanisms that can provide
Virtual Computing Elements needed to run multiple

Compartments on a single physical hardware underneath.

Update Note: FSDR for Compartment allocation to physical
hardware have to be taken into account.

Virtual Machine VMM

Management

Virtual Machine Management refers to the software and
processes used to create, monitor, and manage virtual machines.

Table 2: Modular Platforms Terms

The entity relationship diagrams depicted in Figure 6 illustrate the relationships between various
entities, along with their respective multiplicities. The diagrams are divided into three sub-diagrams,
each focusing on a specific entity: Modular Platform Instance, Compartment Instance, and
Functional System Instance.

These sub-diagrams provide a detailed view of the relationships and associations of each entity
within the context of the overall system. By examining these diagrams, one can gain insights into
how the instances of Modular Platforms, Compartments, and Functional Systems are interconnected
and interact with one another.

The entity relationship diagrams serve as a valuable tool for understanding the structural composition
and dependencies within the system architecture.

FP2-WP26-D-DBN-003-06 Page 32 of 171 25/07/2025

Rz

Modular Platform
Instance

l

Physical
Computing Element

Virtualisation
Environment
Instance

l

Virtual
Computing Element

|

Compartment
Instance

Contract No. HE — 101102001

Virtual
Computing Element

Functional Application
Task Replica

Compartment
Instance

=

—urope's

Safety Environment
Task Replica

Runtime
Environment

Instance

Runtime
Environment
Instance

Compartment
Instance

Functional Application
Instance

3.7.3 ERJU SP CE domain: OAS

The second deliverable of the ERJU SP CE domain — called “Operational Analysis Specification”
(OAS, as of June 2024) [15] — contains an updated terminology (that was considered for the aligned
glossary of chapter 3.7.2) and focuses on discussing operational aspects in the context of I1, 12 and
I3 (see chapter 3.7.1). Here, operational scenarios, an operational context and a first collection of
operational requirements is developed for the computing environment (see chapter 3.10).

Functional System
Instance

Figure 6: Entity relationship diagrams

+—O0OH

Safety Environment
Instance

The operational context of the OAS shows exemplary deployment scenarios for Functional Systems
in different configurations and with differing safety goals. Furthermore, a Functional System is

defined to consist of the following:

e all Functional System Compartments

¢ Functional System Deployment Rules

e all necessary Approval Documentation

FP2-WP26-D-DBN-003-06

Page 33 of 171

25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

The operational scenarios discussed in the OAS are categorized into 4 categories:

Integration: The act and pre-conditions of bringing a new item into the operational system.
e Deployment: Actual manipulations on computing elements (physical or virtual)

Update: Scenarios for changing of different in-place elements

Recovery: Reactions to different failure scenarios.

The operational scenarios are used later in this document to derive requirements for the internal
interfaces of the modular computing platform, see chapter 8.

Relevant Actors and Entities are introduced in the OAS as well.

The OAS also derives a first set of requirements bases on the operational context and scenarios
given. They are categorized into three categories: Hardware, Safety and Availability and
Virtualization. A subset of the requirements is captured in this document in Appendix A.

3.74 ERJU SP TCCS domain

The ERJU SP Transversal CCS (TCCS) domain is working on overarching topics. For the MPC, their
work on diagnosis, configuration and update is relevant. Nevertheless, work package 26 expects the
general and detailed alignments to happen between the different SP domains (CE and TCCS).

3.7.5 ERJU SP PRAMS domain

The alignment with the PRAMS domain is intentionally still very limited for work package 26 task 2,
which is the context for this deliverable. In the follow-up task 3, the alignment will be intensified.

3.7.6 ERJU SP Cyber Security domain

The alignment with the Cyber Security domain is as well limited but relevant content has been tried
to be integrated into separate chapters of this deliverable as 3.8.2, 6.8 and 7.4.9.

3.8 PRAMSS

The abbreviation PRAMSS is an extension of “RAMS” (as defined by EN 50126-1), adding
parameters of systems crucial in a modern railway environment.

e P: Performance (new)
¢ R: Reliability

A: Availability

M: Maintainability

S: Safety

e S: Security (new)

The following subchapter give a brief discussion on how these parameters are of relevance for the
MPC.

FP2-WP26-D-DBN-003-06 Page 34 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

3.8.1 Safety

For a modular computing platform that targets applications like interlockings, functional safety is a
property that influences almost every aspect of the concept presented here. Even if the MPC is used
in scenarios where only Basic Integrity software is necessary, there are still requirements to be
fulfilled from a regulatory standpoint, especially if modularity concepts are used.

Therefore, the MPC will enable most of its advantages if it's embedded into a modular safety
certification approach. As per the MPC purpose MPC-P03 and assumption MPC-AQ5, all safety
integrity levels ranging from Basic Integrity up to SIL 4 are to be supported, with the expectation that
Functional Systems almost always will contain elements with different SIL requirements.

While the concept presented here takes into account all needs that arise from a potential standards-
compliant implementation of the MPC, the scope of Task 2 of work package 26 — which is the context
for this deliverable — is not including a full safety analysis. A study on modular platform certification
is the topic for the work package’s Task 3, which will document its findings in deliverable D26.4. The
expectation there is to align with the work of the SP PRAMSS domain, see chapter 3.7.5.

In the meantime, insights into how to approach modular safety for state-of-the-art systems can, for
example, be found in the “SIL4 Cloud” [3] and “SIL4 Data Center” [4] research reports.

For a layered architecture with FS compartments of different safety levels running aggregated on a
virtualization environment, it's essential to define the safety architecture and to identify the safety
related requirements which arise by SW based SE running on COTS hardware, for this see
chapter 6.7.

3.8.2 Security

For modular platforms, appropriate cybersecurity approaches need to be identified that match their
needs. In general, all relevant interfaces and layers of the modular platforms architecture have a
need for special cybersecurity requirements.

Within the System Pillar the cyber security domain is responsible for the high level security
architecture and requirements which includes and are applicable to the modular platform.

Fleet Management Systerns
(Depots. Vehicles)

Note
for Securty <-> Core-Group Communication DMZ
walle &

Shared Securty
(TIME, PKL IAM, LOG, BKP. SWU)

Figure 7: Scope of ERJU System Pillar - Cyber Security domain

FP2-WP26-D-DBN-003-06 Page 35 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

The security domain is currently working on 3 documents which include requirements for the modular
platform. The final versions are going to be available at the end of the year 2024.

e 30_Secure Component Specification v.0.85
e 40_Secure Communication Specification v.0.85

e 50_Shared Security Services Specification v0.85

Shared Security Services

Secure Component
Specification

Shared Security
Interface
Specification

Secure
Communication
Specification

Secure Component A <€ > Secure Component B

-

Secure Component
Specification

Secure Component
Specification

Figure 8: Key terms and technical specs used in the System Pillar Cyber Security domain

3.8.2.1 Secure Component Specification
The secure component specification is based on previous work done in EULYNX BL 4 R2 and ESCG

and is based on the following standards.
e |EC 62443-4-2 Ed 1
e ESCG Requirements
e UNISIG Subset 146 v4.00
e UNISIG Subset 147 v4.00
e CEN TS 50701/IEC PT 63452

It describes the cyber security requirements for secure components like the modular platform which
include for example hardening, encryption, certificate usage and making use of the shared security
services and secure communication.

3.8.2.2 Secure Communication Specification

The secure communication specification is based on previous work done in EULYNX BL 4 R2 and
ESCG and is based on the following standards.

e UNISIG Subset 146 v4.00
e RFC8446 The Transport Layer Security (TLS) Protocol Version 1.3

FP2-WP26-D-DBN-003-06 Page 36 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

It describes the requirements for the secure communication which are needed to communicate
between secure components. In case of the modular platform this will include communication
between functional system compartments and from functional system compartments to external
systems and shared services which require secure communication.

3.8.2.3 Shared Security Services
The shared security services specification is based on previous work done in EULYNX BL 4 R2,
ESCG and UNISIG Subset 146 v4.00.

The specification defines the interfaces to the Shared Security Services which the modular platform
will use and are required for interoperability in and harmonization of the European rail automation
domain.

The Shared Security Services include the following services which can be used by applications on-
board a trainset or by trackside applications:

e STS - Secure Time Synchronisation - service for secure time synchronisation to Secure
Components

¢ PKI - Public Key Infrastructure - service for distributing certificates and their status to Secure
Components, crucial for all secure communication

¢ |AM - Identity and Access Management - service for managing digital identities (human users
and assets)

o NAC - Network Access Control - service for identifying, authenticating, and authorizing
network access of Secure Components

e LOG - Security Logging - service for collecting log messages from Secure Components and
relaying log messages (e.g. to another relay or SIEM)

e SSO - Single Sign On - service for managing roles for authorisation and single-sign on (SSO)

Comment: SSI-SSO is not needed when there is no human userlog in (e.g. on embedded
devices)

e BKP - Backup and Restore - service for creating and restoring backups to/from Secure
Components

Comment: SSI-BKP is not needed when there is nothing to backup (e.g. on devices without
state with fixed configuration)

e DNS - Domain Name System - service for name resolution to map domain names to IP
addresses

FP2-WP26-D-DBN-003-06 Page 37 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

National Services | Time Source Name Server
NTS DNS with DNSSEC
Asset

Enterprise Shared - PKI Certificate Management/ - Name Server

ser';l”ces E55) Time Source Authority (PKI CA) c te SIEM Identity Provider (ESS-DNS)

Directory

Enterprise Shared ESLSTS ESHPKI ESHAM ESHLOG ESI-550 ESIDNS

Interfaces (ESI) (NTS) (CMP aver HTTPS) (SCIM) (syslog over TLS) (OIDC) (DNS with DNSSEC)

- Identity and
Shared Security Secure.T'Te PKI Reqgistration ssu.au, Access ‘sa_mm, Nemgn'(‘;“;lcess Security Logging Single Sign-On B?:kut‘) and Name Server
Services (58§) | SYNCIOMISANON | nonty (P RA) < (soM) > Management < (sc) ou (LOG) (8S0) ek (DNS)
(STS) (IAM) (NAC) (BKP)
Shared Security SSL5TS S51PKI Es;'g‘:‘cm SSHOG 551550 SSLBIP SSLONS
Interfaces (SSI) (NTS) (CMP aver HTTPS) E x (syslog over TLS) (0IDC) (OPC UA 5C) (DNS over TLS)
over RADIUS)
Secure Component
(e.g. object controller, radio block centre, onboard unit, interlocking, shared security services)
Legend:
Shared Security Enterprise NTEIFACE
Service Securily Service (protocol)
(888) (ESS)

Figure 9: Hierarchy and interfaces of shared services

The figure above includes:

e the Shared Security Services which offer Shared Security Interfaces (SSI) to Secure
Components

o the Enterprise Security Services (ESS), which offer Enterprise Security Interfaces (ESI) to
SSS

e external services on a national level used by the ESS

Nevertheless, the cybersecurity aspects of the modular platforms need to be aligned with the
appropriate SP domains, e.g., PRAMS, and they need to be analysed from the perspective of both,
on-board and trackside, deployment options. This work is ongoing.

For a layered architecture with FS compartments of different safety levels running aggregated on a
virtualization environment, it's essential to define the security architecture and identify the security
related requirements for the individual SW layers, for this see chapter 6.8.

3.8.3 PRAM

The remaining letters of the PRAMSS acronym are briefly brought into context of the MPC in the
following sections.

Performance (P)

The MPC will need to assure performance guarantees to the functions (implemented in the form of
Functional Systems and their components). This is handled via a description of what level of
performance is necessary (e.g., computing resources resp. time) in a defined format. This description
can potentially be a part of the FS deployment rules (FSDR).

Reliability (R

The MPC will allow assessment of the reliability properties and influences, determining safety and
availability.

FP2-WP26-D-DBN-003-06 Page 38 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Availability (A

The flexibility to reach necessary availability goals for a given function is part of the MPC, e.g., by
allowing different redundancy configurations.

For a layered architecture with FS compartments of different safety levels running aggregated on a
virtualization environment, it's essential to identify and define the needed requirements from view of
availability, for this see chapter 6.9.

Maintainability (M)

To reach expected maintainability goals, the MPC includes fault detection and identification services
like diagnostics and logging and offers clearly defined interfaces to allow maintenance and
restoration of a failed system (see also chapter 6.11).

3.9 USER STORIES

As mentioned in chapter 3.7.1, the first SP CE domain deliverable (RIS, [14]) introduced thirteen
user stories. They are derived from the SP “Common Business Objectives” [16]. The user stories
with their advanced expectation towards a modular railway computing platform build the basis for
the work of the SP CE domain and also the MPC. Several important user stories are given here, for
all user stories and their details please refer to the RIS [14].

SPT2CE-18 — Minimize overall dependencies

As a supplier, rail infrastructure manager or railway undertaking, | would like to minimize
dependencies among Functional Application, Runtime Environment and Hardware, in order to
minimize obsolescence related risks and costs.

SPT2CE-19 — Aggregate multiple Functional Applications on the same Instance of a Computing
Platform

[...]
SPT2CE-20 — Remotely add, modify, delete or configure functions

As a supplier, rail infrastructure manager or railway undertaking, | would like to be able to remotely
add, modify, delete or configure functions via a harmonized approach (without or with minimal effort
and lean process for new authorization), in order to reduce operational expenses, time to
deployment, Functional Application Downtime and Service Unavailability.

SPT2CE-23 — Computing Platform suitable for Functional Applications up to SIL4

As a rail infrastructure manager or railway undertaking, | need a Computing Platform (Runtime
Environment and Hardware) suitable for Functional Applications up to SIL4, in order to be able to
integrate railway-in-house or third party developed Functional Applications.

SPT2CE-25 — Replace one Hardware by another with minimal or no re-authorisation effort
[...]
SPT2CE-28 — Interface a Computing Platform with existing systems

As arail infrastructure manager or railway undertaking, | would like to interface a Computing Platform
with existing systems through a communication network and/or discrete hardwired connections in
order to minimize the acquisition and integration cost.

SPT2CE-30 — System operation and update deployment without or with minimal on-site presence

[.]

FP2-WP26-D-DBN-003-06 Page 39 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

3.10 OPERATIONAL CONTEXT AND OPERATIONAL SCENARIOS

The SP CE domain “OAS” deliverable [15], as introduced in chapter 3.7.3, discusses the operational
context and several operational scenarios based on the terminology given in chapter 3.7.2 and the
basic ideas from their first deliverable, “RIS” [14], as introduced in chapter 3.7.1.

A general assumption for both, operational context and scenarios, is, that the activities are focused
on Functional Systems. This is a result of the SP CE domain’s “main objective of standardising the
Computing Environment [...] to enable the operation of Functional Systems from various suppliers
on a shared pool of physical computing resources” [15]. Depending on the needs of the FS, as
documented in its FS deployment rules (FSDR), different scenarios are given as examples for their
configuration. These needs depend on requirements towards availability, redundancy, and additional

safety related measures.

1. FS (#1) implementing a 2-out-of-3 redundancy configuration using three compartments. The
compartments each need to be run on a distinct piece of physical hardware.

2. FS (#2) implementing the same configuration as above, but also including a fourth
compartment with Basic Integrity software only, that has no further need for redudancy and
could be deployed on any suitable physical hardware.

3. FS (#3) implementing a 1-out-of-2 redundancy configuration using two compartments with
Basic Integrity software. The redundancy goal can only be achieved when the compartments
are run on distinct piece of physical hardware.

For FS #1 and #2, an application specific communications interface 10 is used between the two. As
this 10 interface is highly specific, it's out of scope for the MPC.

The operational scenarios discussed in the OAS focus on the FS resp. compartment level. As such,
the learnings later derived for the MPC are mostly relevant for the internal handling of the
compartments (hardware independence approach, see chapter 5.4) and the interface exposed to
facilitate the necessary operations and status collection (external interfaces, see chapter 7.4.6.1).
The overview of the scenarios as discussed in the OAS is given in the following list. For details,
please refer to [15].

Integration Scenarios

SPT2CE-1411 Integration of Functional System FS2 beside Functional System FS1 on already
existing Computing Element

SPT2CE-1406 Integration of Functional System FS2 with Functional System FS2, interacting
with each other

SPT2CE-1405 Integration of Virtualisation Environment on a new version/type of a physical
Computing Element

Deployment Scenarios
SPT2CE-1420 Prepare Physical Computing Element(s)

SPT2CE-1421 Install Virtualisation Environment on Physical Computing Element(s)
SPT2CE-1428 Configure Virtual Computing Elements required for first Functional System
SPT2CE-1431 Deploy Functional System Compartments on Virtual Computing Elements
SPT2CE-1439 Uninstall Functional System deployed on Virtual Computing Element(s)

FP2-WP26-D-DBN-003-06 Page 40 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Update Scenarios

SPT2CE-1448 Replace physical computing element

SPT2CE-1446 Update Virtualization Environment while Functional System is Running
(Compatible Update)

SPT2CE-1456 Update Functional System while it is Running (Compatible Update)
SPT2CE-1458 Update Functional System including Stopping of FS (Incompatible Update)

Recovery Scenarios
SPT2CE-1483 Total SW Failure of one FS Compartment

SPT2CE-1499 Failure of all external communication channels regarding 10
SPT2CE-1485 Total SW Failure of all FS Compartments

SPT2CE-1482 Individual SW failure of one virtual computing element
SPT2CE-1489 SW Failure of one complete VE Instance

SPT2CE-1487 SW Failure of all VE Instances

SPT2CE-1496 Individual HW failure within one physical Computing Element
SPT2CE-1490 Total HW failure of one complete physical computing element.
SPT2CE-1492 Disaster scenario - failure of all computing elements

SPT2CE-1501 Failure of one external communication channel regarding 10

3.11 INTENDED USAGE SCENARIOS

For a discussion around usage scenarios for the MPC, two cases must be differentiated: The usage
of the Modular Platform Concept (as described in this deliverable) and the usage of actual platform
implementations compatible to the MPC (CPI — compatible platform implementation).

MPC Usage Scenarios

The MPC can be used to implement platforms that are compatible to the principles as outlined in this
deliverable. As the deliverable itself is not a directly implementable specification, additional
subsequent steps are necessary for full standardization of the relevant interfaces to unlock the
potential benefits described in the previous chapters.

Nevertheless, to research the feasibility of the MPC, the information and design proposals from this
deliverable can be used to guide future work. Especially for the highly recommended — as per
RIS [14] — interfaces for the operation of compartments (12, I13) and the integration of CPI into a
bigger IT/OT landscape (11), prototypes can be built on this deliverable, enhancing the specification.

The MPC itself can also be used as a basis for the definition of prototypes and demonstrators, such
as the work package 36 “On-board Platform Demonstrator”.

CPIl Usage Scenarios Examples

As the MPC is one unified concept, various implementations of the MPC (referred to as CPI, see
above) are possible and are expected to be tailored to their use case and environment. Example
types of CPI are given here, without the list being exhaustive:

¢ Platforms for small, on-premises trackside data centres that are used to operate interlockings

FP2-WP26-D-DBN-003-06 Page 41 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

o Platforms for medium sized, centralized trackside data centres that are used to operate
multiple interlockings

o Platforms for larger, centralized trackside data centres that are used to operate multiple
interlockings from diverse areas, potentially also offering georedundacy for other data centres

e Platforms for consolidated on-board functionality, especially in CCS areas were frequent
updates are to be expected or functionality will be added later in the lifecycle

There are of course smaller scenarios where the MPC in general might not be suitable, e.g., for
single object controllers and similar single-function, potentially embedded systems. Here, CPIs are
not expected to be available.

3.12 PLATFORM ENVIRONMENT EXAMPLES

For the MPC, two platform environment examples are shown in this chapter. These examples are
included to try to complement all the information regarding MPC and show a potential mapping of
abstract terms like FS and FA. The first one is about wayside and the second one is about on-board.
These examples do notinclude an exhaustive list, neither for the functional systems nor for functional
applications, and are not trying to define MPC usage. Both platform environment examples are
proposed following the Figure 5 introduced in chapter 3.7.2 (ERJU SP CE domain: Glossary).

The principal concepts concerning the Glossary are Functional Systems (FS) and Functional
Application (FA). In the following figures, they are represented as green (FS) and in blue (FA).

Concerning the wayside environment and subsequently to Figure 10, RBC and Interlocking systems
are used as examples.

Trackside Environment

rBC (rsi(1) RBC (FSI(2)) rBC (Fsi(n))
| Y S e s | — |
T : ‘ I |
| Management MA (FAI) £) Management MA (FA1) ' | Management MA (FA1) |
ottty et LI (o o i L | 'ManagementTsR (FA2) 1 !
N eme S v Management TSR vianagement TS 2
| (MonogementTR(FA2)]| o (MoncgmoetR(AY) | _ 5 L OSSESOREEee |
Management End of Mission (F A3)! | r' Management End of Mission (F A3)! Bl Management End of Mission (Fa3)) |
e e B l < |
° | | e | ! ° |
- T | — - | el e e |
i1 (FAn) Iy |) (Fan) 1) I (FAn) I
e e o - T R S S S R R .
Interlocking System (Fs2(1)) interlocking System (Fs2(2)) Interlocking System (FS2(n))
| | Signal Controller (FAI) T, | | Signal Controller (FAI) (L | | Signal Controlier (Fa1) !
—————————————— | = e m e m e — === i
S mmmm—mmmmm = | O m—m—mmm— = I o
| |_Point Controller (FA2) 11 | |_Point Controller (FA2) 11 | | Point Controller (FA2))|
FS eSS | i S Sl | —I ————————————— |
—————————————————————————— e o 0 TR TR SR - S50 SR 2SS - S S SN PR . S o Sp
r l_l(:vt.‘l Crossing Controller (FA3) | | L L Level Crossing Controller (FA3) | | '_‘_ Level Crossing Controller (FA3) | |
e P o o e e e e e o o - - e P e e e - - b §o o o o v o o o o o e e e
o | ° | [3 |
| o I o | o
I ° | I ° | | o |
__ I
1 (FAn) ! @ (FAn)) ! Ui (FAn) |
O e ot e i O | R e P e e e e | A N VRSP . |

Figure 10: Trackside environment for MPC

The first functional system proposed on a trackside environment is the RBC. In this case it can be
distinguished different functional applications such as a management of a MA, a management of
TSR or a management of an End of Mission among other. These three functional applications are
some examples proposed for this concrete functional system, but there are not the only ones, and it
can be more functional applications for a functional system.

FP2-WP26-D-DBN-003-06 Page 42 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

—urope's

Regarding RBC concept, it could be several RBC working as functional systems on different
instances just because on a same train route there are different RBC to connect.

As there is a functional system for the RBC it will also another one for the Interlocking System. The
functional applications proposed for this functional system are the signal controller, the point
controller and level crossing controller among others.

Concerning on-board environment and subsequently to Figure 11, it is proposed another four
concepts working as functional systems, ETCS, FRMCS, ATO and National System.

On-Board Environment

ercs (rsi(1)) mmcs (Fs2(1))
____________________________ .
| I [l e e Sy
—————————————— Gateway Function(FAl |
1 | DM function (FAT) 1 , 4 Gateway Function(FA) | |
iy e | I S
I 1 BTM (FA2) I L 4 adio sctebin bl | :
B I | -
I N . I
I ® | | . I
g e R ' oo S I
I (Fan) 1! ML SRR Lol S I
e | 1 |
ATO (F53(1)) National Sytem (FS4{1))
I______________I I_ _____________ 1
r:_uﬁu;- functions | {:&l]_ T | | 1 DMIfunction (FAT) I :
S —————————— -)
I\ riming Foint banagement (FA2) | | rrEmE) ¥
I - I I - I
I ® | | ® I
I o I I . |
——————————————— - - - ="
| FAN) ! I |
L (FAn) | | L (Fan) I

Figure 11: On-board environment for MPC

The first functional system proposed to run in an an on-board environment is the ETCS concept.

According to ETCS concept understood as a functional system, DMI function and BTM are some
platforms environment examples for functional application.

The second functional system proposed for the on-board environment is FRMCS. Pursuant to
FRMCS functional system, some examples of functional applications can be found. These functional
applications are the gateway function and the radio function.

For the on-board domain, another functional system proposed is the ATO concept. Driver functions
and timing point management are the examples proposed as functional applications.

The last functional system proposed is the ATP national System. The functional application for this
functional system depends on the national system itself, so, as it was for the ETCS concept, the
BTM and DMI function shall be examples of functional application for this functional system.

FP2-WP26-D-DBN-003-06 Page 43 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

—urope's

4 MODULAR PLATFORMS REQUIREMENTS

Based on the aspects of the Modular Platform Concept as described and discussed in the previous
chapter, the next step is to create a set of relevant requirements. These requirements are the basis
for architectural work in the next chapter.

Requirements towards railway-suitable (modular) computing platforms have been defined in the
past, as discussed in this work package’s first deliverable [18]. Requirements defined in the past
usually have a distinction between trackside and on-board systems, depending on their context. For
providing a more generic set of requirements, this work package aims to remove this distinction
where feasible, potentially only containing some optional and specialized requirements. The
following briefly discusses the potential sources for this work.

Project Discussion

RCA/OCORA The RCA/OCORA initiative is a comprehensive source for the on-board
computing platform requirements. In particular the document OCORA TWS03-
020-"Computing Platform Requirements” v. 4.1[6], part of the OCORA
Release 4 (and later), notably all the “approved” requirements MSC-XX, with
XX from 01 to 127 (including the optional ones), are suitable for the purpose of
MPC.

EULYNX While EULYNX is looking at several aspects of distributed computing systems,
its goal is not to define modular computing platforms. As such, EULYNX is only
a source for indirect stakeholder requirements.

SIL 4 Data Center & SIL The “SIL4 Data Center” report[4] and the “SIL 4 Cloud” [3] list several
4 Cloud Reports requirements in textual form.

ERJU SP CE domain The already discussed second deliverable of the ERJU SP CE domain (OAS,
see chapter 3.7.3) provides several requirements based on the operational
scenarios discussed.

Table 3: Previous work related to MPC requirements

The goal of this deliverable is to present selected requirements for the MPC, ideally with little to no
differentiation needs for on-board and trackside use. The explanation of the methodology, the
detailed list of sources, and the selected respective adapted requirements are found in Appendix A.

FP2-WP26-D-DBN-003-06 Page 44 of 171 25/07/2025

@2 Contract No. HE — 101102001 6‘

—urope's

5 MODULAR PLATFORMS ARCHITECTURE

The Modular Platform is a computing environment for the execution of mixed-critically workloads,
offering the central benefits of allowing portability, flexibility and re-use of business logic captured as
application software, the so called “Functional Applications” (for this and other terms’ definition,
please refer to the glossary in chapter 3.7.2). To enable these benefits, following the previous work
and SP CE domain inputs (see chapter 3.7), three distinct domains for the Modular Platforms
Concept architecture were derived:

e Application-Level Platform Independence (ALPI)
o Hardware-Level Platform Independence (HLPI)
e Interfaces external to the Platform
Here, the notion of “platform independence” refers to the independence of an actual implementation

respectively instantiation of the Modular Platform concept (CPIl, see chapter 3.11). The relation
between the domains is shown in the following diagram.

Computing Platform

: Functional System :
1
I | ;‘ _________ 1
I 1
. Functional Application(s) < communication via platform > !
1 ! |
| | | :
i Application-Level Platform Independence : ! :
! i . other 1
. ! applications 1
Interfaces !
Hardware-Level Platform Independence P <:> and systemsi
Platform i |
Hardware (onboard or trackside) | !
: :
: 1

Figure 12: The three Modular Platforms domains embedded into the overall architecture

How these three domains fulfil the goals of the Modular Platform is explained in detail in the three
dedicated subsequent main chapters. In this overview chapter, the next figure will show how the
Modular Platform domains implement the SP CE domain interface recommendations and enable the
known operational scenarios, using an enriched version of the figure above. Here, the division of SP
CE domain interfaces to our ALPI, HLPI and external interfaces categories is introduced.

MPC domain SP CE Interfaces Details

Interfaces external to the platform e |1: External Diagnostics, Configuration & = Chapter 8
Control Interface

Hardware-Level Application e |2: Hardware Abstraction Interface Chapter 6

Ind d HLPI
ndependence () ¢ |3: Virtualisation Interface

Application-Level Platform Independence 14: Basic Integrity Platform Chapter 7
(ALPI) Independence Interface

o |5: Safe Platform Independence
Interface

Table 4: MPC domain mapping to SP CE interfaces

FP2-WP26-D-DBN-003-06 Page 45 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's
The mapping given in Table 4 is graphically represented in the figure below.

L Functional System | :
1 e e ——- '
| ! ! I
E Functional Application(s) < communication via platform > !
! ! ! E
: @) Basic Integrity @) Safety ! : other E
: : | applications

Application-Level Platform Independence Interfaces

external to the
@) Virtualisation Platform

@) Hardware Abstracton | |} | o _________ 1

Hardware-Level Platform Independence

''and systems.

Hardware (onboard or trackside)

Computing Platform

Figure 13: SP CE domain interfaces mapped to the Modular Platform domains

As shown, the interface 11 is encompassing Modular Platform related and relevant interfaces which
are external to the platform, for example for update and configuration purposes. Interface 11 is not
used for Functional Application communication, e.g., for interfacing to object controllers in an
interlocking application. For this business logic relevant communication, the SP CE domain
introduced a generic 10 interface [15], which is out of scope for the MPC.

Interfaces 12 and I3 are providing means for hardware abstraction and, if needed, aggregation
respectively integration of multiple runtime environments (inside of compartments) running on the
same hardware.

Interfaces 14 and |5 are used by a Functional Application to implement its business logic in a platform
independent manner. A Functional Application may contain both, safe and non-safe functionality,
using 14 and 15, respectively.

Between the SP CE domain interfaces (I11 and 12...15), common parts are needed for the
implementation of an actual computing platform, as shown in Figure 14 below.

These common parts, also called “layers” by the SP CE domain, will be discussed later in the
document, and are at this stage only used to illustrate potential usage scenarios for the interfaces |1
to 15. Also, for the functionality shown within 11, the naming from the SP CE domain has not been
used here, as there are some differences proposed in chapter 8.

FP2-WP26-D-DBN-003-06 Page 46 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Functional System

Functional Application(s) < communication via platform >

i
i 15) Safety
i 14) Basic Integrity Safety Layer]

other

1
! . .
Interfaces external to the{ |14 ! applications
Platform : and systems
1
1
1

Runtime Environment Orchestration

(consisting of operating system, platform services,

Oper . A Diagnostics
communication, security services, etc.)

[)
[)
[Security & Time]
(J

Application-Level Platform Independence

Update

G;) Virtualisation

[Virtualisation Layer]

QZ/) Hardware Abstraction

Hardware-Level Platform Independence

Hardware (onboard or trackside)

Computing Platform

Figure 14: Modular Platform architecture showing key components and interfaces

5.1 MODULARIZATION ARCHITECTURE

The MPC is a truly modular environment when it's agnostic towards multiplicities and tasks of the
physical (e.g., hardware) and logical components (e.g., software executing a business logic). Taking
the approach from the previous chapter — the distinction of three MPC domains — and focusing on
the two providing independence methodologies (HLPI and ALPI), the modular setup of physical and
logical components can be introduced using simple examples.

First, in the context of HLPI (Hardware-level Platform Independence), the flexible deployment of
Functional Systems onto Physical Computing Elements being part of a Compartment Execution
Environment is shown.

Afterwards, the construction of CPs using the ALPI approach is discussed.

This is done using the terms and naming conventions established in chapter 3.7.2.

511 HLPI Modularization Architecture

Functional Systems are, on a high level, a collection of Compartments that together implement a
certain business logic. They can be seen as a deliverable by a supplier that an end-user wants to
deploy onto its CPI consisting of one or more Compartment Execution Environments (CEE).

HLPI provides the ability to execute a certain number of Compartments (CP) on a single Physical
Computing Element (PCE). Several PCEs can be part of a single CEE. Compartments are belonging
to a Functional System (FS) and only are of value when they are deployed as described in its
individual FS Deployment Rules (FSDR), in accordance with their approval documents. The
generalized view is shown in Figure 15 below.

FP2-WP26-D-DBN-003-06 Page 47 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

oo |

Y i ! 1

! Functional System ! | h

1 I | :
1 s ¥ c f

! Compartment(s) communication via !

I platform K !

| : other 1

| applications |

Hardware-Level Platform Independence (HLP!I) ''and systems

Interfaces : '

; ; ternal to the '

Physical Computing Element(s) (PCE) ex <::> |

Platform E E

Compartment Execution Environment (CEE) ! !

Figure 15: Modularization enabled by FS Compartments on HLPI

For an exemplary FS that employs a 2002 (2 out of 2) configuration, the FSDR states that two
Compartments need to be deployed on separate PCEs. How this can look like after deployment is
show in Figure 16 below. Here, the CEE only hosts the exemplary FS. The Compartments are
supported by the HLPI mechanisms present on each PCE.

__

Functional System (2002)

| |
| 1
' = =| Approval|
| L] =
: Compartment(s) == FSDR —| Documents| '
... :
deployment according to FSDR
C Functional System |
1 1
|| cP-1(1) cP-2(1) | !
HLPI HLPI
PCE 1 PCE 2
CEE

Figure 16: Example deployment of a single 2002 FS into one CEE

A more complicated — but hypothetical — setup employing two different FS, one 2002 and one 2003,
is being deployed on a pool of three PCEs in the next example, as shown in Figure 17. Here, MPC-
P06 (Consolidating more software on less hardware.) implicates that CPs from different FS can be
executed on the same PCE while being free from interference according to MPC-AQ4. Therefore,
only three PCEs are needed to execute five CPs belonging to two FS.

How exactly the CPs are distributed over the available PCEs is not important for the MPC except for
conditions defined in the individual FSDRs. With FSDR, FS-specific rules for deployment can be
demanded. This would mostly be used to state that CPs belonging to redundancy configurations
have to be executed on distinct PCEs, but could also be used to make sure special applications like
2x2002 has groups of CPs executed in different locations (within a data centre, e.g. different fire
protection zones, or even outside of a single data centre, e.g. for georedundancy).

FP2-WP26-D-DBN-003-06 Page 48 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

I Functional System 1 (2002) Functional System 2 (2003)

Compartment(s) | [|==] FSDR = Approval Compartment(s) | [|a=] FSDR

|
= | Approval
e x—| Documents| | .
|

Documents

i
|

| deployment according toindividual FSDR l

Functional System 2

I Functional System 1

I
|| ep-1(n) || cP-(1) cp-2(1) || cP2(t) |! | cP-3(1)
|
HLPI HLPI HLPI
PCE 1 PCE 2 PCE 3
CEE

Figure 17: Example deployment of a 2002 FS and a 2003 FS into one CEE

Further examples can be constructed, especially as there is no limit to the number of CPs and FSDR
complexity in a single FS. Of course, also simple single-CP examples for Basic Integrity usage not
employing redundancy could be constructed. For the purpose of this description of HLPI modularity
for the MPC, the two examples already given should be sufficient.

5.1.2 ALPI Modularization Architecture

Where in the HLPI context, as shown in the chapter before, the deployment of CPs onto a CEE is
shown, the ALPI context is concerned with integrating Functional Applications (FA) into the CPs. It's
a step that can be seen as a supplier implementing a business logic and packaging it into CPs to be
bundled up to a full FS, together with the FSDR and approval documents.

The relevant difference is, however, that there is no mandate to employ ALPI methods to build
suitable CPs, in order to allow the packaging of legacy or other software into CPs. For future projects,
using the ALPI approach can be beneficial, though, especially when needing access to the services
available in the MPC using 14, as introduced later in chapter 5.2.

Functional System

Compartment

Functional Application

VN N
(15) [\
Environment

Runtime Environment

Application-level Platform

1 1
| 1
| 1
1 1
| 1
I 1
| 1
I |
! 1
I |
| 1
l Safety k|4) I
I |
| 1
1 1
! 1
| |
| 1
I |
! 1
I |
I

! Independence (ALPI) i

Figure 18: Modularization enabled by FS Compartments using ALPI

FP2-WP26-D-DBN-003-06 Page 49 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

When employing ALPI, within a CP the Runtime Environment (RTE) and the Safety Environment
(SE) together with their interfaces 14 and 15 are provided for the Functional Application (FA) to be
used. A potential use-case could be to use a CP without FA, supplied by a platform vendor, and
install a FA into this CP. This kind of “empty” CP — where empty is referring to the missing FA — could
come prepared with all necessary services, the RTE and the SE, so that the FA developer can focus
on implementing the business logic. Also, updates to any component in such an “empty” CP would
be feasible in a generalized way, leading to installing the specific FA into updated (and potentially
pre-verified) CPs.

In the following figure, such an “empty” Compartment containing the ALPI components RTE and SE
is called ALPI-CP. This also implies that interfaces 14 and, where necessary, |15 are available within
this kind of CP to be used for FA development.

Functional Application T Functional System
:ll]:u Compartment(s)
ALPI-CP Functu;rlgl Application

Environme Runtime Environment

- . -
Runtime Environment | Application-level Platform

Application-level Platform Independence (ALPI)
Independence (ALPI) -

—

Figure 19: Installing an FA into an ALPI-CP to create a FS CP

| |

: I

| I

: |

: 1

15 N\ ,__|::> : Safety (15 14 |
Safety 14 | Environmen :
nt | :

E l

- I

Depending on the needs of the FA, multiple CPs with different numbers of FA Tasks (FAT) can be
created in this process. The multiplicities for these different redundancy configurations are not shown
here. Also, the remaining FS artefacts FSDR and approval documents are not covered here, as are
all implications that would result from a full configuration management.

5.2 SERVICE ARCHITECTURE

While the previous chapter was focusing on how individual Functional Systems are constructed in
the MPC, these FS have to rely on different services available to them and within the MPC. Many of
the advantages of the MPC are in fact dependent on a multitude of services that provide, together
with appropriate external interfaces, the ways to build, deploy and maintain a full MPC system.

As envisioned by the SP CE domain, service and management functionalities as remote update,
diagnosis, IT-security are defined and provided separately:

a) by ERJU as one generic rail standard for all aspects relevant for the rail systems

b) by standard IT solutions for the aspects in context of VE, depending on the selected solution
of the VE.

This separation has an impact to the service architecture and on the external interfaces of the
platform. When the Compartment Execution Environment (CEE) itself cannot be expected to provide
a standardized interface — due to allowing multiple options for standard IT solutions, only limited by
the fact that these solutions need to fulfil the requirements towards them — additional entities have

FP2-WP26-D-DBN-003-06 Page 50 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

to be defined to bridge these differences. These architectural components are introduced on a high
level in this chapter and are further detailed and explained, as well as their interfaces, in chapter 8.

5.21 High Level Service Architecture

Figure 20 below shows the relationship between components within a CPI (compatible platform
implementation, e.g., a product complying to MPC, see also chapter 3.11), and introduces the
entities Shared Services, Platform Management, CEE, and their accompanying interfaces. The
relationships are shown for an arbitrary number of FS within a CPI. The interfaces are shown in the
same colour as the components that are responsible for their respective specification.

MPC scope (boundary of a CPI)

ry
AI

Functional
System(s)

Update, Configuration & ‘_[L]—’
Diagnostics o Shared
atiorm | Services
Compartment Orchestration & Management >
Execution & Diagnostics

Management
Environment

o Components MPC specific COTS external
_%

Interface [has the colour of component specifying the interface]

Figure 20: High Level MPC service architecture

Compartment Execution & Management Environment (CEME)

When (exchangeable) standard IT solutions are used for the VE (Virtualization Environment) inside
CEE (Compartment Execution Environment), the assumption is that there is a technical management
tool respectively interface for the management of the whole CEME, including the PCEs, VEs and
VCEs, offered by the chosen COTS VE solution. In_addition to the SP_CE definition of CEE, the
CEME also provides interfaces towards the Platform Management, e.g. for tasks such as on-
boarding of new PCEs, setting up the VE and creation of VCEs. The interface, referred to in the
figure as “Orchestration & Diagnostics”, is expected to be part of the solution used and to be required
to expose the necessary functionality for CEE management. Implementation details of interfaces 12
and I3 are specific to the chosen, suitable VE solution, and are not shown here.

Shared Services

The shared services as mentioned here are the combination of several services defined by multiple
ERJU SP domains and contain security, update and diagnostics related functionality. Specification
of them is out of scope in WP26, but highly relevant for the MPC.

Platform Management

The Platform Management (PM) is a new component added to the input of the ERJU SP CE domain
and deemed necessary within the scope of the MPC. The PM controls the specific CEE, interacts

FP2-WP26-D-DBN-003-06 Page 51 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

with the Shared Services (via 1) and collects management-related diagnostics data from the
Functional Systems while also managing their configuration and updates. Its function within the MPC
is to enable the usage of different suitable COTS CEEs while providing fixed interfaces (I1) to the
outside. This way, CPIs with different PCE+VE+VCE combinations still expose the same interfaces
to the outside. The PM is also providing a User Interface (Ul), especially to support the user stories
for the MPC as outlined in chapter 3.9. For example, central tasks of the PM are to properly deploy
FS according to their FSDR, monitoring the FS’s operational state and reacting to any non-regular
situation that can occur. There is no guidance from the MPC on the amount of FS managed by a
single PM, respectively the number of PCE available in a CPIl. The implementation of the PM is
expected to fulfil to Basic Integrity requirements only.

11

The 11 connections shown in the figure are a combination of COTS interface definitions respectively
protocols for standard tasks, such as time synchronization, and additional fixed interfaces defined
by ERJU, e.g. for FS update. The I1 interacts with all, Function Systems, Platform Management and
the CEE. However, not every component has to implement or comply with the whole range of I1
functionality. Especially for the interfacing to the CEE, the assumption is that standard interfaces for
task targeting IT security are used by |1 and are available from potential COTS CEE solutions.

Detailed discussion of the interfaces

A more detailed discussion of the relevant internal and external interfaces can be found in chapter 8.

5.2.2 CEME and AEE Service Architecture

To support update and diagnostics within both, the CEME and the AEE areas, at least two non-
exclusive variants of endpoints are possible. This is shown in the next figure.

Functional Application Shared Services
AEE Safety Runtime (out of scope for
Environment Environment Monitoring WP26)
Update Client I i @
. Diagnostics
Update Client
_,| Diagnostics . ! Server <::>
Server ALPI (optional— only if used in CP)
CP-MGMT CP-x(y) of FS z Platform
VCE 1 VCE 2 Management
VE 1
- e
Monitoring
Data PCE 1
CEME

Figure 21: Service architecture endpoints in AEE for FA and PCE data collection

CP-MGMT

The Management Compartment (CP-MGMT) is a way to bridge the standard IT VE environment to
the AEE. Here, the example given in Figure 21 is the collection of hardware monitoring data (e.g.,
temperature measurements of certain components, see chapter 6.7) from the PCE, being

FP2-WP26-D-DBN-003-06 Page 52 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

transported through the VE and VCE to an exemplary “Diagnostics Server” in the CP-MGMT. This
diagnostics server can collect the data and exchange it with the Shared Services and the PM.
Similarly, an update client can be implemented. A dedicated CP-MGMT would be dependent on the
VE used and use its methods and interfaces to access PCE, VE and VCE data. The CP-MGMT
would be managed by the PM. Methods for achieving the data transfer from PCE to CP are discussed
in chapter 6.6

ALPI Services

When 14 or 15 are being used, the data collection can happen within the confines of the ALPI, as
shown in an example for VCE2. Here, monitoring data of the FA execution can be collected within
the appropriate Compartment and transported to the Shared Services and PM. Similarly, an update
client would be located within the CP.

Other services

The update and diagnostics services are only two of the possible services. Security services for
APM, PKI and time synchronization are not shown here but would be integrated into the FS CPs.

Combination of CP-MGMT and FS CP

For certain implementations of MPC, it might be feasible to integrate the functionality needed within
the CP-MGMT into the normal FS CPs. This can reduce the number of CPs in a given environment,
as one CP-MGMT per PCE is necessary. However, it creates a strong dependency on a given VE
also in the normal FS CPs. Additionally, only one CP per PCE should read and report data from the
VCE, VE and PCE, to avoid exclusive access problems and double reporting issues during
operation. This creates dependencies between different FS that might not be aware of each other,
leading to further complications.

Detailed discussion of the interfaces

The detailed derivation of the necessary interfaces to facilitate the data and control flows is shown
in chapter 8.

5.3 ADDITIONAL ASSUMPTIONS

The Modular Platforms Architecture imposes additional assumptions on the definition on the MPC
and its components, namely HLPI, ALPI and the external interfaces. They augment the SP CE
domain recommendations and assumptions collected so far.

MPC-AA01 11 shall always be used (includes potentially non-standardized orchestration
interfaces, namely the OI, and nested orchestration in future cases where there are
containers inside VMs that need to be tended towards).

MPC-AAO02 Usage of 12/I3 does not mandate 14/15, and vice versa.

MPC-AA03 The message content when using 14 and 15 provided communication mechanisms is
not specified in/by work package 26 respective the Modular Platform Concept.

MPC-AAO04 As a first step, systems that can be orchestrated based on manual human user input
via 11, leading to a so-called “static configuration” are in the scope of this work
package. The Modular Platform Concept, especially the Platform Management
component, however, can in the future be expanded to include dynamic configuration
approaches. This requires the safety implications of this approach to be solved.

FP2-WP26-D-DBN-003-06 Page 53 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

MPC-AAD5 Safety & Reliability: Only the safety layer is expected to be an up to SIL4 grade
product. Kernel, orchestrators, etc. are not expected to be SIL grade.

MPC-AA06 Over I1 safety related information gets exchanged but safety is assured by the safety
layer of a functional system.

MPC-AAO7 11 can be used to enable remote maintenance.

MPC-AAO08 Virtualisation Software and Hardware of the CEME are considered providing non-
safety related functions. The used COTS products raise the need to be qualified

according to EN50716.
MPC-AAQ9 HLPI and ALPI use is agnostic to each other.

MPC-AA10 The deployment configuration is checked by the safety layer to ensure restricted
deployment (especially to avoid replicas to be deployed on the same physical HW).

MPC-AA11 Updates of components outside of the safe part (e.g. security updates) should not
affect the safe part uptime.

5.4 CONCLUSIONS

The Modular Platforms Architecture builds on top of the ERJU SP CE domain input and prior work
of work package 26 itself. The previous introduction of ALPI and HLPI layers helps to simplify
systems views and the discussion, and also represents concrete areas of expertise and future
product development.

The modularization and service architecture approaches shown in this chapter build the basis for the
following chapters, detailing how HLPI, ALPI and interfaces can be specified.

From the architecture perspective, one open point remains: A combined modularization architecture
proposal showing how the deeper levels of FS (e.g., compartments, RTE, Functional Applications,
etc.) interact with the interfaces introduced in the service architecture, as well as with the Platform
Management and Shared Services (see Open-011).

FP2-WP26-D-DBN-003-06 Page 54 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6 HARDWARE-LEVEL PLATFORM INDEPENDENCE (HLPI)

6.1 INTRODUCTON

One of the primary objectives of HLPI in this new architecture is to facilitate the integration of multiple
Functional Systems, which may originate from different suppliers and possess varying safety
integrity levels, onto a shared Physical Computing Element (i.e., hardware). This shall be
accomplished through the implementation of a virtualization layer, which ensures maximum
hardware independence and facilitates seamless integration.

Functional System

FS-1
Compartment 1

i:ﬁQﬁ_

S \._/
Virtualization Environment

(12)

Physical Computing Element (hardware)

FS-2
Compartment 1

= e e e ==

Computing Platform

Figure 22: Aggregation of FS Compartments on same Hardware

By utilizing a standardized IT solution as a common virtualization environment, the architecture
benefits from a reliable and well-established solution. It includes all the necessary management
functionalities for efficient software orchestration. Furthermore, the streamlined management of
various commercial off-the-shelf (COTS) hardware versions and types from different suppliers will
be significantly simplified. This approach is further enhanced by the availability of qualified hardware
from multiple hardware suppliers.

To accomplish this, it is essential to define the specific interfaces between hardware, virtualization
layer, and Functional System software in alignment with the safety and security architectures. It is
important to note that the virtualization software and hardware are considered to be non-safety
components without safety implications, yet they must still meet all relevant security requirements.

The subsequent sub-chapters provide an overview of various aspects related to the layered
architecture, including requirements for architecture elements and any outstanding issues that need
to be addressed. The primary focus is to identify requirements from the perspectives of safety (see
chapter 6.6), security (see chapter 6.8) and availability (see chapter 6.9).

6.2 ASSUMPTIONS

6.2.1 FS without direct I/O interfaces

In scope of Computing Environments / Modular Platforms are FS with communication-based
interfaces to other FS.

FP2-WP26-D-DBN-003-06 Page 55 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

The communication interfaces between FSs shall be standardized. By this it may not make a
difference if connected other FSs are running on the same computing elements or not. Even FSs
running on specific hardware (e.g. legacy systems which are already installed) can be connected via
the same standardized communication interfaces.

I/O control functionality is out of scope of HLPI. Such I/O control functionalities need use case
specific HW solutions for the individual use cases, e.g. point controllers need other specialized
physical functionality and interfaces than signal controllers. By this a hardware independent
standardization of the system internal architecture of /O controllers is not easily possible.

Functional Systems that require 1/0 control functionality are connected via the communication-based
interface 10 to use-case specific I/0 controllers.

6.2.2 FS internal communication

Each solution of an SE supports communication-based interfaces between the FS compartments
without any constraints regarding the usage of the network, as e.g. no kind of constraints as “direct
LAN cables between the VCE”.

6.2.3 FS time behavior

Time critical processes in HW related functionalities are realized behind 10 within dedicated 1/O
controllers.

Note that latency times of communication technology leads to additional delay in message
processing. This must be foreseen in the overall architecture and safety case.

The trackside overall architecture (interlocking, radio block centre, object controllers) is already
defined in such a way that an interlocking needs to show reaction times in a range of 1-2 seconds.

The new overall architecture within the on-board system must be defined in such a way that the FS
can react in time ranges below 1 second, with potential real time constraints depending on the
function®. Time critical processes in HW related functionalities with faster timing requirements are
realized behind 10 within the use-case specific I/O controllers.

6.2.4 VE as non-safe software without safety relevance

The proposed safety architecture is based on a non-safety related virtualization environment. By this
the functionality of the virtualization environment such as e.g., task scheduling shall not affect safety,
but it may affect availability.

Example:
If the scheduling of SW parts of aggregated FSs is not processed as required by the individual FS,
then the FS itself shall identify this problem and react in the needed way from view of safety.

In case of a safety related FS the safety concept of the SE must not require a specific behaviour of
the virtualization environment from view of safety. A misbehaviour of the virtualization environment
shall never affect safety, only availability. See REQ-HLPI-1.

5 For example, there is a time constraint of 1 second from balise reader to brake in the ETCS on-board context. This
constraint needs to be budgeted over all systems in the reaction chain.

FP2-WP26-D-DBN-003-06 Page 56 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6.2.5 Standardization Update Process for FS Compartments

It's assumed that the process for the handling of FS Compartments in context of updating a FS is
defined by the System Pillar Transversal Group and hence out of scope for WP26.

6.3 RESOURCE PARTITIONING FOR FS COMPARTMENTS

From view of availability (i.e., stable running FS compartments) it's essential to assign physical CPU
resources (e.g., cores, cache / shared bus) exclusively to individual FS compartments. Assigning
virtual cores to individual SW components within the FS compartments (e.g. Functional Application
Replica using one CPU core exclusively) can only happen within the Compartment.

The VE shall provide the mapping of CPU cores exclusively to VCE, see REQ-HLPI-2.

The CPU performance provided by the mapped CPU resources must be guaranteed for every
timepoint during the runtime of an FS Compartment, see REQ-HLPI-3.

Parallel installation of additional FS Compartments (of other FS) in additional VCEs on the same
Virtualization Environment Instance must not have any impact on the guaranteed CPU performance
(cores) for running FS Compartments, see REQ-HLPI-4.

Open point What kind of further HW architecture aspects will be “bottle necks” in parallel
usage by independent FS compartments running aggregated on same
computing element? Memory bandwidth? Network bandwidth?

See Open-001.

6.4 FS COMPARTMENT CONFIGURATION OF THE VE

6.4.1 Modularity and independency of VE Config for FS Compartments

The individual VE configurations of FS compartments shall be modular and independent. Each FS
Compartment shall have its own configuration for the VCE. Adding or deleting of FS compartments
onto the VE instance must not have any impact on the VCE config of the other FS compartments.
See REQ-HLPI-5.

6.4.2 Compatibility at VE interface

The virtualization environment shall provide defined and stable interfaces for the configuration of the
VCE usage by FS compartments. A new version of the VE may not have any impact onto the VCE
Configuration of the FS compartment.

Each change in the user interface for the VCE configuration shall be compatible in such a way that
existing VCE configs (of already running system) can be used furthermore. See REQ-HLPI-6.

6.5 INTERFACE I3 AND VE ARCHITECTURE

The interface 13 of the virtualization layer describes the basic aspects regarding the virtualization
layer in context of aggregation of several systems with their own guest operating systems and

FP2-WP26-D-DBN-003-06 Page 57 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

possibly different safety criticality levels and possibly provided by several vendors, running together
on the same hardware.

This interface 13 is not an interface in sense of "programming interface" but it's the definition of
needed functionalities and features within the virtualization layer from view of the Functional Systems
running above.

Functional System Functional System

1
FS-1 | FS-2
Compartment 1 | Compartment 1
I
I

1
|
|
1
I
1
'l
1
1
1
I
1

1 i !

i i ==

| e pep—— S p—_—
T13) (13}
N’ g

Virtualization Environment

Physical Computing Element (hardware)

Computing Platform

Figure 23: Basic architecture with VE and interface 13

Basic aspects of the different architecture variants as Container Solution (without Hypervisor) and
Hypervisor Type-1/2 for the aggregation of FS compartments are discussed here in the following
sub-chapters.

For dependencies from the perspective of safety see chapter 6.7, for security see chapter 6.8 and
for availability see chapter 6.9.

Open point Architecture: how to handle the message-based interface of the NHA (see
chapter 6.7.1) to FS Compartments above — is this interface a part of 137
See Open-002.

6.5.1 Hardware Independence

One of the main goals is to achieve hardware independence at the interface I3, is to be able to
change the used physical hardware without any impact to the FS compartments.

The runtime interface I3 of the VE shall provide HW independence for the FS compartments running
above.

The FS related configuration of the VCE shall be independent from the concrete used hardware.
Changing the hardware (e.g. replacing HP-servers by Fujitsu-servers) shall not have any impact onto
the VE config of the FS compartments running above, meaning it shall be possible to replace a used
physical hardware during runtime of the FS without touching the FS related configuration of the VCE.

To avoid resource consuming emulators within the VE the CPU instruction set should be defined for
the interface 12, for this see chapter 6.6.

HW related information, which is needed by the SE (see chapter 6.7.1), must be provided in an
abstract generic way to achieve HW independence at the interface 13.

FP2-WP26-D-DBN-003-06 Page 58 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6.5.2 Container

Usage of container technology means:

¢ No flexibility in OS type, all FS must be based on same operating system type (e.g. Linux).
This yields the advantage, that only one OS has to be maintained.

¢ Dependencies between the common operating system kernel and the FS running above.

e Weak “isolation” from view of resource usage, several FS are using same OS kernel
resources. Overall integration necessary, but potentially a ressource-saving approach, e.g.,
for on-board, where rolling stock hardware ressouces might be limited.

e Overall performance testing necessary with different systems involved. By this it is assumed
that the integration and qualification of containerised FS Compartments stays in the
responsibility of one single vendor or integrator.

overall performance testing

Functional System : Functional System

| [y
S,

1
1
1
v '
= 1
: Compartment 1
1
1

CTpartment 1

ntainer C(W
%perﬂ Sysiam Kewe®
(12)

Physical Computing Element (hardware)

,____I______

——— o -

Computing Platform

Figure 24 Container as VE

6.5.3 Hypervisor

Usage of hypervisor technology means:

¢ Flexibility in type of the guest OS, each FS can be based on own operating system type (e.g.
Linux, Windows), accompanying additional effort for maintaining the guest OS.

e No direct technical dependencies to the FS compartments running above.

¢ Best available solution for the “isolation” of the aggregated FS compartments from view of
resource usage (cores, memory, communication), coming along with additional ressource
demands and a potential higher performance decrease in comparison to containers.

From view of safety a technical possibility is needed to implement functionalities running on the host
operating system bare metal on the physical computing element, see chapter 6.7 NHA (Native
Hardware Access).

From view of availability the best possible resource isolation for the FS compartments is essential.
By this the common host operating system behaviour and workload shall be as deterministic as
possible.

FP2-WP26-D-DBN-003-06 Page 59 of 171 25/07/2025

Rz

|
|
|
: Compartment 1

Contract No. HE — 101102001

Functional System

FS-1

Functional System

FS-2

Guest OS
(13)

. \‘_/ N
virtual machine

——— e e = == —

Guest OS

N\
——4 13 F===
viduM;hine

Hypervisor with Host OS
o

|
|
|
Compartment 1 :

(12)

Physical ComputirMment (hardware)

Computing Platform

Figure 25: Hypervisor as VE

Exemplary available solutions:

o KVM integrated in Linux

o KVM integrated in Red Hat Enterprise Linux

o VMWare

o Windows Hyper-V

6.5.4

Hypervisor and Container

=

—urope's

The combination of Hypervisor and Containers (running within a shared virtual machine) leads to
known challenges, increasing the system complexity (e.g., for the orchestration of compartments).

As introduced in 6.5.2 and depicted in Figure 26 below, multiple Functional System compartments
running aggregated as containers in one VM raise the need of overall performance testing. Resource
isolation isn’t established in such a way that compartments of FS-2 and FS-3 can be provided

independently, as this is the case for the FS-1 compartment deployed in a separate VM.

Functional System

overall performance testing

virtual machine

Container

I 1 | i
I I 1 | |
]
: FS-1 Lo ! !
| Compartment 1 ! ! FSogee [Hem | Fs.a !
1 I] C t 1 1 (4 t 1]
! | Guest OS | ! ! onen ' ! o en !
I I 1 1]
L___/|3____I g | IL _______ ‘ ——|
Y

I Container

\

Guest 0S @I

o

virtual machine
Hypervisor with Host Og

(

)

SN

Physical Computing Element (hardware)

Computing Platform

Figure 26: Hypervisor and Container as VE

FP2-WP26-D-DBN-003-06

Page 60 of 171

25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6.5.5 Summary

6.5.5.1 Trackside use case
For the trackside use case of a data centre the isolation and independency of the aggregated FS

is highly essential for the individual handling of FS compartments during the lifecycle of the data
centre.

If some FS as interlockings or RBCs are already running with full safety responsibility then it must
be possible to bring additional FS into the data centre without touching the running FS, even without
the need of extra integration tests of the already running FS on the VE.

By this the trackside use case needs best possible isolation of the aggregated FS. Best possible
resource partitioning is needed to achieve independency and availability of the FS technical
interference between the aggregated FS in context of resource usage.

Such an isolation is achieved in best possible way by the usage of a hypervisor with virtual machines
for the FS compartments. From safety view some functionalities must be provided by native running
software NHA (see chapter 6.6). This means that a hypervisor is the preferred solution.

Interlocking 1 Interlocking 2 Interlocking 3 Interlocking 4 Interlocking 5

Functional System

Functional System Functional System Functional System Functional System

I 1] 1 1

1 I 1 1 1 | 1 1 1 1

1 |] I [! 1 1] |

1 FS-1 | | FS-2 | 1 FS-3 I | FS-4 1 I FS-5 |

: Compartment 1 : 1| Compartment 1 : 1| Compartment 1 : 1| Compartment 1 : 1| Compartment 1 :
1] 1 1 1 L =
! Guestos | | : | Guestos | ! : | Guestos ! : [Guestos | ! : | Guestos | !

1 !] I 1 ! 1 1] |
L= '/IS\ [I.___.k/I_S\] l___.‘fl;,\}____l L rl,:a____l L /|_3____l

1=

Hypervisor with Host OS

Computing Platform

Figure 27: Trackside use case data centre: FS isolation by virtual machines

6.5.5.2 On-board use case

In the on-board use case Software changes or enhancements will not be done during the operation
of trains. A train will always be stopped for SW maintenance purposes. By this the independent
handling of the individual FS in context of software maintenance is not as essential as for trackside.

Additionally, the physical computing elements within the train will not provide the same amount of
CPU resources as in a track side data centre, meaning the computing element resources are limited
and must be used very efficiently.

For such an on-board use case a container-based architecture will be possible to run basic integrity
software, which does not depend on a concrete SE. Such container based aggregated BIL FS must
be integrated holistically to ensure the availability of the overall system.

Both, hypervisors or containerised approaches are in principle appropriate as well for on-board
safety critical Functional Systems. Depending on concrete needs and existing constraints a trade-
off between flexibility, extendibility and available resources may drive a concrete solution decision.
Nevertheless, for a multi-vendor setup a hypervisor solution should be much more appropriate.

FP2-WP26-D-DBN-003-06 Page 61 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

overall performance testing

: Functional System : : Functional System : : Functional System |
| I | | [} I
I | [l_ | 1
| I I ’ [} ‘ I
i | i F52 |) ﬁ I
: Guest OS : : ConfPartment 1 : I | Compartwent 1 |1

[} I
| I | __% 1 1 1
L 1 B ! | R — —=|

o (13)o
— gontainer | | Contaiyr

virtual machine g Prerating System Ker
\{ual machine

: . 13
Hypervisor with Host OS u

(12)

th Computing Element (hardware)

Computing Platform

Figure 28: On-board use case: up to SiL4 in virtual machine, BIL in container

6.6 INTERFACE 12 AND HW ARCHITECTURE

The interface 12 of the hardware is not an interface in the sense of a programming interface but rather
the definition of required CPU characteristics like processor instruction set, needed CPU features
like performance, etc. from the perspective of the Functional System running aggregated on the
virtualization layer above.

In this context the topic of "flexible and HW-independent usage of HW" must be analysed regarding
the technical details of the HW which need to be defined as "generic standard".

The goal of such a standardized architecture is to achieve full flexibility in replacing the used
hardware by another hardware without changing the software of the Functional Systems running
above.

Assumptions:
e CPU architecture is specified by 12/13 and has to match the FSDR of deployed FS.

¢ No usage of CPU emulation below I3 to avoid potential issues with systematic errors in the
emulation layer.

For future proof solutions it's essential that the safety concept of each SE solution is basically
independent from the processor instruction set to be able to change the CPU architecture without
impact to the safety concept, see REQ-HLPI-7.

A first list of potential requirements needed to define this “interface” is following and is subject to
further study.

Requirements towards the virtualization layer above 12

o Flexible support of “incompatibilities in detail” in context of hardware spare handling, see
REQ-HLPI-8.

¢ Flexible support of differencies in new variants of hardware, see REQ-HLPI-9.

FP2-WP26-D-DBN-003-06 Page 62 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Requirements from the VE and Functional Systems running above towards the hardware

e Basic hardware architecture (CPUs, cores)

¢ Minimum requirements in context of CPU performance, communication, ...

e MTBF values of the hardware

¢ Relevant aspects on interface to hardware vendor (e.g., compatibility of hardware versions)

Open point The details of the requirements towards the hardware have to be defined, see
Open-003.

6.7 SAFETY

6.7.1 HW related information for SE

For the aggregation of several FS compartments of different safety integrity levels, possibly provided
by different suppliers, on the same virtualization environment the safety architecture is essential.

Figure 29 shows the proposed safety-architecture for flexible and efficient handling of aggregated
FS (on the same computing element) possibly provided by different suppliers. For efficient handling
of safety related FS compartments running decoupled in parallel on same VE it's essential that the
VE software below the FS compartments does not have safety relevance. Safety relevance of the
common VE layer would lead to high effort in overall integration of the FS compartments (provided
by different vendors) with the VE due to “safety related resource sharing of the VE”. So it's proposed
that this VE software is non-safe (possibly provided by a third party).

Each solution of safety environment shall define its own safety concept in a way which allows the
usage of non-safe VE, each misbehaviour of the VE has to be identified by the SE and the SE must
react safe, see REQ-HLPI-1.

VE will serve information to the safety environment above, but safety responsibility is completely on
side of the SE.

The figure below shows for the basic safety architecture the SW layers running on one individual
physical computing element. This architecture is independent from the details of the safety principle
as e.g. 2003 or 2x2002, meaning it's the same architecture for the other compartments of the up to
SIL4 FS running on other physical computing elements (but not shown in the figure).

FP2-WP26-D-DBN-003-06 Page 63 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Basic integrity

Functional System Functional System

FS-1
Compartment 1

FS-2
Compartment 1

—— = o e wm m mm mm mm mm mm mm owm omw]

Functional — -
Application
Safety Functional
Environment Application
Operating System Operating System
(Comm., IT-Sec) (Comm., IT-Sec)
—(o)y (i)

Virtualization Environment |NHA

@
hysical Computing Element (hardware)

Computing Platform

Figure 29: Safety architecture

It depends on the solution specific safety-layers which kind of behaviour and which level of
"guarantee" for this behaviour is needed by safety layers to let the safety-layer run on non-safe
virtualization layer.

As described later in this chapter, some safety related functionalities within an SE need a reliable
access to the physical computing elements.

The information cannot be created by FS compartment itself running within a virtual machine
because reliable access to underlying physical hardware is not guaranteed for SW running in a virtual
machine.

This information cannot be provided by a 3™ party VE because it would not be able to argue the
quality of this information (by 3™ party VE) on side of the SE.

As a result, it's necessary to provide this hardware related information by a native running reliable
software (reliable in the way that the provided information is not influenced systematically). This
native running software is called “Native Hardware Access (NHA)”, and this software needs direct
hardware access without influence by virtualization or emulation. Reference to 50129 is related to
ensuring the nominal operating conditions for the hardware and the system. The correct operation
can be ensured by directly monitoring the parameters (defined by NHA) or indirectly by monitoring
the behaviour of the system. The requirements and example use cases for this are described within
the next chapters.

6.7.1.1 Distribution of up to SIL4 FS Comp on different CPUs

The Safety Environment needs a reliable information about the identification of the physical CPU
hardware on which the compartment is running. This information can be provided in the required
reliable way by a dedicated software component NHA (Native Hardware Access).

See REQ-HLPI-10, REQ-HLPI-11

FP2-WP26-D-DBN-003-06 Page 64 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

SIL4 Functional System with 2003 principle

1
I |
|
: FS-1 FS-1 FS-1 |
1| Compartment 1 Compartment 2 Compartment 3 :
1
: Safe FA Safe FA Safe FA :
! Safety Safety Safety :
| Environment Environment Environment |
I — o - I
I
: Guegios I Guedt 0s | |
I I
I |
B LD o SR £ x o e —"_ 13 FF----- 1
virtual rhachine viriual Tachine virtual fpachine
[NHA] Hypervisor with Host OS [[NHA] [NHA |
12 HW identification HW identification HW identification
PMywrel Computing Physical Computing Physical Computing
Element (hardware) Element (hardware) Element (hardware)
Computing Platform

Figure 30: CPU identification provided by NHA

6.7.1.2 Core Usage Information
Depending on the safety concept of the SE, an information about the used cores might be needed
(to provide the information for safety checks of the SE).

6.7.1.3 Independent clock source for the creation of a safe monotonic time
The SE needs to realize time related safety critical services as e.g. cyclic and synchronous replica
processing or timer-services for the FA.

Open point What is the criteria for unique CPU identification? MAC address? TPM
content? See Open-004.

Open point: How to solve the relationship of used CPU cores (used by the FS compartment
within the VCE) and information provided by NHA? See Open-005.

To achieve a “safe monotonic time” the SE needs 2 independent monotonic clock input sources for
safety, an additional 3™ (in case of 2003) or even 4™ (in case of 2x2002) independent input source
for availability. Each of the clock input sources must be provided from a different physical HW and
all these input sources may not be influenced in systematic way.

This information can be provided in the required reliable way by a dedicated software component
NHA (Native Hardware Access), which is running natively on the hardware, see REQ-HLPI-10.

FP2-WP26-D-DBN-003-06 Page 65 of 171 25/07/2025

=

Contract No. HE — 101102001

—urope's

T SIL4 Functional System with 2003 principle !

1
: FS-1 FS-1 FS-1 i
1 | Compartment 1 Compartment 2 Compartment 3 :
1
! Safe FA Safe FA Safe FA :
! Safety Safety Safety |
| Environment Environment Environment 1
I —— o - I
T cuelios | " Guedi 08 | | Guekios |
I I
1 |3 | 1
- H=———---- BF——---------=

virtual rachine virtual Tachine
Hypervisor with Host OS [NHA |
12 monotonic clock monotonic clock
quartz
Physical Computing Physical Computing
Element (hardware) Element (hardware) Element (hardware)
Computing Platform

Figure 31: Monotonic clock input source provided by NHA

6.7.1.4 CPU temperature

Depending on the safety concept of the SE an information about the CPU temperature is needed (to
provide the information for safety-check on side of SE).

This information can be provided in the required reliable way by a dedicated software component
NHA (Native Hardware Access), which is running natively on the hardware, see REQ-HLPI-10.

SIL4 Functional System with 2003 principle

1
| 1
1
: FS-1 FS-1 FS-1 |
1 | Compartment 1 Compartment 2 Compartment 3 :
1
! Safe FA Safe FA Safe FA :
! Safety Safety Safety :
| Environment Environment Environment 1
I =: o - I
: Gucdi 08 | " Guedi0s | | |
1
: |
AB T - - | EEEEmm e o= I3 JF==——-- 1
virtual rpachine virtual Tachine virial fhachine
[NHA] Hypervisor with Host OS | NHA |

12 CPU temperature

| CPU temperature

PMyercél Computing

Element (hardware)

Physical Computing
Element (hardware)

Computing Platform

CPU temperature

Physical Computing
Element (hardware)

Figure 32: CPU temperature provided by NHA

FP2-WP26-D-DBN-003-06

Page 66 of 171

25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Open point: the details regarding sensor information provided by NHA in context of
temperature must be clarified, see Open-006.
6.7.1.5 Voltage
SEs may need to monitor the voltage going to different hardware parts of the computing platform the
software is running on. This helps detecting any potential device failures or short circuits.

This information can be provided in the required reliable way by a dedicated software component
NHA (Native Hardware Access), which is running natively on the hardware, see REQ-HLPI-10.

Open point: the details regarding sensor information provided by NHA in context of voltage
must be clarified, see Open-007.

SIL4 Functional System with 2003 principle

1

I 1
1

: FS-1 FS-1 FS-1 |

1| Compartment 1 Compartment 2 Compartment 3 :

1

: Safe FA Safe FA Safe FA :

' Safety Safety Safety :

1 ’ . .

| Environment Environment Environment 1

I —— o - I
)

! Guedios | Gueft os | |
1

: |

AB T - | EEEEmm e o= 13 JF=——-- 1

virtual rpachine virtual Tachine virtaal fpachine
[NHA] Hypervisor with Host OS [NHA | [NHA |
12 voltage voltage voltage
PMyercél Computing Physical Computing Physical Computing
Element (hardware) Element (hardware) Element (hardware)
Computing Platform

Figure 33: Voltage information provided by NHA

6.7.1.6 Summary
The detailed solution for such a native running software NHA depends on

a) the concrete solution of the VE as e.g. host OS and developer interface of the VE
b) the required hardware information depending on the safety concept of a SE solution
c) the provided data of the concrete hardware via the interface 12.

Since NHA functionality depends on the concrete needs of the SEs, it is challenging to standardise
it. Further study is necessary to enable support for diverse SE solutions while not creating limitations
on COTS hardware selection.

FP2-WP26-D-DBN-003-06 Page 67 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Different SE solutions with different safety concepts provide different SRACs in context of the
required HW related data. For a generic usage of the same COTS hardware for all SE solutions the
COTS hardware has to provide all required data via interface 12 to NHA.

The grade of HW independence of such a NHA functionality depends on the SE solution specific
details of the required information at the interface 12, meaning the HW related SRACS of the SE
solution.

In the context of HW related SRACSs we have to differentiate between:

1) basic hardware information:
- CPU HW identification (e.g. by MAC address, TPM content)
- steady system clock

2) specific hardware information which depends on concrete HW details like specific sensors or
cores, e.9.:
- core pinning
- CPU and/or other temperatures
- voltages

For basic hardware data 1) the access by NHA will be possible without dependency to the concrete
interface of the hardware. NHA gets the basic hardware data via OS functionalities of the Host OS
of the VE. For this basic hardware data a change of the hardware should not have an impact onto
NHA, SRAC fulfilment by NHA should be possible in a generic way.

For specific hardware data 2) the access by NHA must probably be adapted specifically for different
HW variants. In case access to physical hardware details as sensors is not the same for different
hardware variants, this would mean: a change of the hardware may have an impact onto NHA and
the SRAC fulfilment by NHA has to be re-validated for the new hardware variant and new version of
NHA. Anyhow, standardised access to sensors should be strived for where feasible to avoid such
re-validation efforts.

Open point: It must be clarified, if the required information from the physical hardware can
be provided via standardized interface 12 or if the NHA functionality must be
adapted for different HW variants. See Open-008.

Open point: the responsibility and technical handling (installation and update) of such a
NHA software must be clarified. See Open-009.

6.7.2 Safe handling of Software

Handling of safety related software by basic integrity management software running on non-safe
operating systems and VE leads to the hazard that handling of the software (starting and stopping,
storing and deleting) is not reliable from view of safety.

Example:

It cannot be guaranteed in context of SW update of safety related SW that all old SW components
are stopped and deleted and newly installed SW components are started. Inconsistencies due to
mixture of old and new versions of the safety related SW components must be identified by the SE.

FP2-WP26-D-DBN-003-06 Page 68 of 171 25/07/2025

Rz

Contract No. HE — 101102001

=

—urope's

Hence the SE has to ensure the consistency of all involved safety related SW components for the
concrete overall version of the FS, see REQ-HLPI-12.

Open point: the safe handling of safety critical software in context of a non-safe VE with
standard orchestration tools must be clarified, as e.g. to avoid unallowed
installation and starting of FS duplicates, see Open-010.

6.8 SECURITY

The software packages VE and each FS compartment are each an individual secure component.

3rd party provider of the VE has to consider IEC 62443 to provide certification as needed, see REQ-

HLPI-13.

Open point: overall certification of the secure device needs to be clarified, see Open-012.

Open point: the architecture for access to the TPM of the PCE must be clarified in context
of functionality secure boot and certification for IE 62443 SL3, see Open-013.

I “Functional System | '™ “Functional System 1
1 1
| FS-1 o FS2 I
1| Compartment 1 | | 1| Compartment 1 ||
] I
| ! | !
| ! | :
I I
| 1 | 1
1 1 | 1
| 1 | 1
- 1 1
| !] !
I !] .
I !]]
| I] I |
| i |, e

Wualizaton EnvironmeyJ

T 12)
A" .

/
s

Physical Cu}‘nputing Element vqardware)

Ij TPM

O]

r--------

——— = = TR el

|

i

i

|

i

1

1

|

I Standard IT
“““““ [

Platform]

, Management

i Sooooos :

I Physical

I Computing Element

I (hardware)

(=

Interfaces
external to
the
Platform

Zurope’s
__________ 1

I
I Shared Services IT :
1 Security |

]

PR

6.8.1

Figure 34: Secure device

ERJU Security within the FS Compartment

Each FS compartment contains its own implemented realization of IT security functionalities.

FP2-WP26-D-DBN-003-06

Page 69 of 171

25/07/2025

im Contract No. HE — 101102001 é

=urope's ~ail

Workload for IT-security isolated by separated virtual machines (no cross-dependencies between
compartments of different FS).

Need for IT sec patching depends on concrete solution, probably several patches necessary
(individual patch for each FS compartment and VE).

Functional System Functional System |
1
1
1
1
1
1
1
1
1
1

=urope’s all

|

T T T T T |
| Shared Services IT |
Security |

« Secure update
* Secure comm.
* Secure diagnosis
+ IT-sec logging

o
®

Physical Co\lputing Element (ﬁardware)

Interfaces

externalto
the

Platform

Hypervisor

Gl =

Physical
Computing Element
i TPM i (hardware)

Figure 35: Security within FS Compartments

6.8.2 ERJU Security inside of the CEE

IT-security functionalities are running as addon-functionality native on host OS of the Hypervisor.

FS compartments are not directly affected by IT security, but integration of interface to IT security
functionalities is necessary.

Here, workload for IT-security is not isolated by resource partitioning, cross-interference between FS
compartments is possible (workload of one FS compartments affects performance of another FS
compartment). Thus, this variant is not investigated further.

FP2-WP26-D-DBN-003-06 Page 70 of 171 25/07/2025

m Contract No. HE — 101102001 é

=urope's ~ail

Functional Systam

&

Zuropes ~ail

I Shared Services IT |
Sacurity 1

12
Physical Computihg Element (hardware) s
Computing Element
v

Figure 36: Security native in the CEE

6.8.3 ERJU Security in own VCE as “Soft Crypto Box”

IT-security functionalities are realized as own software running as own compartment in an own virtual
machine with message-based communication interface 14 to the FS compartments. It's a kind of “soft
crypto box”.

Workload for IT-security is isolated by separated virtual machines (no cross-dependencies between
compartments of different FS). FS compartments are not directly affected by IT security, but
integration of |14 is necessary.

Internal communication between the compartments is not secured. This communication between the
virtual machines goes via the hypervisor and it cannot be ensured that this is protected in needed
way. Additional latency times are introduced by message-based communication between the
functional compartment and the soft crypto box. Re-deploying is complicated because security zones
have to be reconsidered. This would be hard to maintain, not exploiting flexibility of VCEs.

Functional System

1 . o

I

I =

I

: otepoton é

=urope’s ~ail

Interfaces !

Physical
Computing Element
(hardware)

Figure 37: Security by “Soft Crypto Box”

FP2-WP26-D-DBN-003-06 Page 71 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6.8.4 Conclusion

From view of “best possible resource isolation” the ERJU defined IT security functionalities should
be implemented for each FS compartment individually. From view of “responsibility for SL3
certification” each FS should be by itself responsible for IT security of own FS. This means that IT
security has to he provided as part of the FS compartment.

Preferred solution is architecture with IT security provided by the FS compartments as described in
chapter 6.8.1.

6.9 AVAILABILITY OF FUNCTIONAL SYSTEMS

6.9.1 FS Runtime behavior, reaction time and inter-communication

The basis for high availability of a safety related FS is a nearly perfect deterministic runtime
behaviour, reaction time of the involved FS compartments with high-speed communication in-
between.

The SE replicas of an up to SIL4 FS, which are running in different FS compartments on different
(physical) computing elements, process a time-critical inter-synchronization between the SE replicas
as e.g. for processing of a safe voting mechanism.

If an individual process step is not perfect (runtime behaviour, reaction time, inter-communication)
the SE identifies this and reacts in a safe way as e.g. by stopping the affected SW parts. This leads
to reduced FS availability and could potentially resultin the stoppage of all application replicas of the
FS.

The VE shall guarantee a stable runtime behaviour and reaction time of all SW parts within a safety
critical FS Compartment for each timepoint, see REQ-HLPI-14.

6.9.2 Individual failures in hardware or software of the platform

Failures in the hardware or software of the VE lead to failures within the FS compartment(s). To
address these failures effectively, redundancy mechanisms for the FS compartments are necessary.

In case of an up to SIL4 FS this redundancy is realized within the SE and depends on the safety
principle (as e.g. 2003 or 2x2002).

In case of BIL FS, the backup functionalities of VE standard IT solutions may be usable as
redundancy mechanism. It depends on detail of the concrete FS if such standard solutions can be
used or not.

Requirement addressed to the SE of an up to SIL4 FS: The SE shall support the automated repair
of a failed FS compartment, see REQ-HLPI-15.

6.9.3 Individual failures in communication

For availability of external communication to connected systems, each FS uses at least 2 redundant
communication channels. Basically, each individual FS compartment can provide individual
communication channels of a redundant communication. For flexible usage on the side of the FS
compartment for automated repair of broken network communication channels its necessary to
consider all FS compartments in the configuration and physical installation of the network.

FP2-WP26-D-DBN-003-06 Page 72 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

The VE shall support the mapping of FS compartments to virtualized Ethernet adapters and to tie a
virtualized Ethernet adapter to a specific physical ethernet card. See REQ-HLPI-16.

6.9.4 Availability in context of SW maintenance
SW maintenance of non-safe software as e.g. for IT security patching shall be possible during the
operational phase of the FS for trackside use cases.

Example:
For an up to SIL4 FS with 2003 principle, the process for an IT security patch shall ook like this:

e Update of the FS compartment 1 with new version for IT-security mechanism. For this the FS
keeps running as 2002 (FS compartment 2 and 3) during the update phase and achieves
2003 mode again after synchronization of the updated FS compartment 1 with the other FS
compartments 2 and 3.

¢ Repeat this for FS compartment 2.
e Repeat this for FS compartment 3.

Requirement addressed to the FS: update of the IT security components within the FS compartments
shall be possible “VCE-wise one after the other”, see REQ-HLPI-18.

Update of the VE shall be possible in same way “PCE-wise one after the other”, see REQ-HLPI-19.

Requirement addressed to the Platform Management: The dependency to update “one after the
other” must be considered, see REQ-HLPI-20.

6.9.5 Geographical redundancy

Open point: The architecture for updating FS by Shared Services and Platform
Management has to be clarified. See Open-014.

For trackside use cases of the Modular Platform, the aspect of “high grade of centralization” leads
to increased availability requirements, such as geographical redundancy.

Geographical redundancy means that the FS is running distributed in different geographical locations
to provide best possible availability in case of a disaster scenario (as e.g. blackout, terror attack, ...).

The main challenge in context of geographical redundancy is the handling of the split-brain problem
for an up to SIL4 FS. See CAP theorem - Wikipedia:

When a network partition failure happens, it must be decided whether to do one of the following:

e cancel the operation and thus decrease the availability but ensure consistency

e proceed with the operation and thus provide availability but risk inconsistency. Note this
doesn't necessarily mean that system is highly available to its users.

For up to SIL4 FS the consistency must be ensured, and this means that a network partition failure
must be handled in a safe way. Additionally, the safe communication to connected systems as
decentralized object controllers must be considered. Safety protocols as RaSTA require fully
synchronized communication channels, which means the switch-over of a centralized interlocking

FP2-WP26-D-DBN-003-06 Page 73 of 171 25/07/2025

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Network_partition
https://en.wikipedia.org/wiki/High_availability

@2 Contract No. HE — 101102001 e‘

—urope's

logic from one location to another geographical location is not possible without interruption of the
safe communication to object controllers.

The safety related handling of split-brain topic must be solved on the functional level of the SE in the
FS, even as e.g. for safety principle 2x2002 without geographical distribution. The VE does not know
details about redundancy mechanism and handling of geographical redundancy by the up to SIL4
FS.

6.10 SCALABILITY

Open point: the safety related architecture for georedundant FS with safe handling of split-
brain problem is not yet defined, see Open-015.

The modular platform architecture shall allow to increase the number of FS Compartments running
on the VE as long as the necessary physical HW resources are available.

Open point: how to handle the scalable usage of CPU resources of the physical hardware
(cores, memory, network cards) for flexible usage by independent FS
compartments running on same PCE. See Open-016.

6.11 DIAGNOSIS

Each diagnosis data must be provided via the interface 11 Diagnosis to the Shared Services
Diagnosis as central data sink. In this it will be necessary to transform the data within the Platform
Management into |1 compatible format, see REQ-HLPI-21.

Maintenance activities to repair failures shall be automated as good as possible by the Platform
Management. For this it's necessary to provide relevant diagnostic data to the Platform Management
for root cause analysis and automated initiation of maintenance activities, see REQ-HLPI-22.

Relevant diagnostic data for the Platform Management is, without this list being exhaustive:

o state of the VE instance on the PCE

o state of each individual VCE

o state of the FS regarding availability of the individual FS compartments

o state of the network which is used for FS internal communication between FS compartments

6.11.1 Diagnosis of the Functional Application (FA)

Open point: The details of the diagnosis architecture to process a root cause analysis and
realize automated repairs are not yet clarified. See Open-017.

Diagnosis of the FA is related to logical states within the running application. This diagnosis data is
provided by the FA itself and provided from the FS compartment via the interface 11 to the Shared
Service Diagnosis. This diagnosis data does not have any relevance for the VE or the Platform
Management.

FP2-WP26-D-DBN-003-06 Page 74 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6.11.2 Diagnosis of the FS

Each FS is responsible to provide diagnosis data about its own health state (e.g., about the health
state of running SE replicas, FA replicas, ...). The FS diagnosis data must be provided by the FS via
I1 Diagnosis (as defined by TCCS) to the Shared Services as central data sink, see REQ-HLPI-23.

Additionally, the diagnosis data must be provided to the Platform Management as data sink for the
handling of FS compartments, see REQ-HLPI-24.

A FS which is running in several parallel FS compartments provides diagnosis data by each FS
compartment individually. This is based on redundancy principle for availability and additionally by
individual diagnosis states in the individual FS compartments. It may happen that individual failures
happen within individual compartments, as e.g. one FS compartment may have an individual SW
failure inside.

The Platform Management must handle this relationship of the individual FS compartments of the
FS, meaning that one FS provides diagnosis data of several FS compartments, see REQ-ALPI-025.

6.11.3 Diagnosis of the VE

Dedicated diagnosis about the VE and virtual computing elements must be provided from the VE to
the Platform Management, see REQ-HLPI-26.

The Platform Management must forward this diagnosis data about the VE and VCEs via 1
Diagnosis to the Shared Services for diagnosis, see REQ-HLPI-27.

6.11.4 Diagnosis of the COTS Hardware

Diagnosis about the physical computing elements should be provided by a dedicated diagnosis
software possibly provided as 3™ party software (as e.g. Prometheus (software) - Wikipedia, SevOne
- Wikipedia) running within its own compartment independent from the rail FS, see REQ-HLPI-28.

This diagnosis data shall be provided to the Platform Management, see REQ-HLPI-29.

The Platform Management must forward this diagnosis data about the PCE via |1 Diagnosis to the
Shared Services for diagnosis, see REQ-HLPI-30.

6.11.5 Diagnosis of the Network

Due to FS architectures with FS compartments running in parallel on different VCEs with a message-
based communication in between, the topic of network diagnosis is relevant for the FS state.

The network diagnosis shall provide the diagnosis data to the Platform Management, see REQ-
HLPI-31. The Platform Management must evaluate this data in context of “root cause analysis” for
the related FS, see REQ-HLPI-32.

m Open point: architecture for network diagnosis, see Open-018. m

FP2-WP26-D-DBN-003-06 Page 75 of 171 25/07/2025

https://en.wikipedia.org/wiki/Prometheus_(software)
https://en.wikipedia.org/wiki/SevOne
https://en.wikipedia.org/wiki/SevOne

@2 Contract No. HE — 101102001 e‘

—urope's

6.12 MAINTENANCE

6.12.1 System Maintenance

A modular handling of non-safe parts during runtime is necessary to enable the maintenance of
systems if they are supposed to stay in operation with high availability requirements.

Relevant maintenance scenarios during FS runtime are for instance:

e IT-Security patch in FS
FS compartment-wise “one-after-the-other’, see REQ-HLPI-33

e |T-Security patch in VE
hardware-wise “one-after-the-other”, see REQ-HLPI-34.

e HW replacement
of an individual physical computing element during runtime of the FS, see REQ-HLPI-35

Maintenance activities for safety related software parts are not easily possible during runtime of
the up to SIL4 FS due to safety related dependencies between the parallel running safety related
replicas.

It's state-of-the-art for safety approvals that the safety related software within the individual
compartments of an up to SIL4 FS belong to the same version. By this an exchange of individual
safety related SW must be done in all involved compartments and this means a FS stop in between
= stop of running safety related software (with old version) and start of new safety related software
(with new version).

6.13 AUTOMATED REPAIRS

Open point: architecture and process for installation of SW on new hardware,
see Open-020.

Maintenance activities for the repair of failures shall be automated as much as possible by the
Platform Management.

Example: Automated repair of a failed VCE (used by an up to SIL4 FS with 2003 principle)

In case of a failure of an individual VCE this failure is
o directly identified by the VE, VE provides diagnosis data to the Platform Management.
¢ indirectly identified by the SE of the belonging FS, the FS running mode is reduced from 2003
to 2002 (because one FS compartment has failed). FS provides diagnosis data to the
Platform Management.

The Platform Management must process this diagnosis data to

e identify the failed VCE as root cause
¢ initiate the repair (new start) of the VCE automatically

FP2-WP26-D-DBN-003-06 Page 76 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

If such a repair (new start) of the VCE is not successful, the belonging FS compartment must be
installed in a newly created VCE. The newly created VCE may be on the same PCE or on another
PCE.

In case of VCE creation on another PCE the aspect ,FS compartments of an up to SIL4 FS must not
be installed on same PCE® must be considered from view availability to avoid a safe reaction by the
SE which identifies an unallowed SW installation of FS compartments on same hardware.

Open point: such an automated installation of safety critical FS compartments by a basic
integrity Platform Management must be evaluated from view of safety. See
Open-021.

6.13.1 Lifecycle management for the VE

By usage of existing standard IT solutions as VE, a lifecycle management for the usage in context
of rails systems is necessary. Each new version of the VE must be qualified for usage in context of
rail systems.

Open point: What exactly is necessary in context hardening of the VE? What kind of VE
functionalities must be deactivated or even removed to ensure that the
handling of rail systems running on VE is possible in way as needed (efficient
handling and available running FS)?, see Open-022.

The VE shall provide backwards compatibility of the VE configuration interface for FS configuration.
FS related VE configuration of old version of VE shall not be affected in context of FS migration onto
new version of the VE. See REQ-HLPI-17.

Open point: Is a kind of “generic” testing possible for performance and runtime behaviour
of a new VE version to avoid the need for integration of each individual FS
compartment version with a new VE Version? See Open-023.

A new version of VE shall not have an impact on safety but may have an impact on availability.

6.13.2 Spare handling of COTS Hardware

For the usage of COTS hardware spares it has to be considered that HW providers usually do not
guarantee that newly ordered hardware is 100% identical to previous deliveries of the same type.

The detailed HW related dependencies between the COTS hardware and the VE at the interface 12
must be identified and “managed” in context of maintenance, for this see chapter 6.6.

6.14 PuBLIc CLOUD

With “public cloud” we mean computing services offered by third-party providers over the public
Internet, making them available to anyone who wants to purchase them. Computing services are
sold on-demand, allowing customers to pay only per usage for the CPU cycles, storage, or bandwidth

FP2-WP26-D-DBN-003-06 Page 77 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

they consume. The cloud provider is responsible for the management and maintenance of the
services. Access is done via the public internet.

Examples:
¢ Amazon Web Services (AWS)

e Google Compute Engine (GCE)
e IBM Cloud
e Microsoft Azure

We do not see “public cloud” as a realistic use-case for the moment and within the next 5 years for
safety-related applications. A Data Center (“Private Cloud”) with defined overall responsibility will be
possible. Basic challenges for “public cloud” are described in the following chapters.

6.14.1 Safety architecture

Basically, FS compartments of rails systems could technically run in a public cloud. Even safety
critical FS Compartments could run in a public cloud under the condition that the needed information
about the physical hardware can be provided in needed reliable way, see chapter 6.8.

For the FS compartments itself it should not make a difference if the virtual machine is in a private
cloud or public cloud. Even protocol drivers for safety relevant communication protocols as RaSTA
can run in a public cloud due to the safety architecture “underlying VE is not safety relevant”.

The topic of “native hardware access” (NHA) is not solved for public cloud.

6.14.2 Security architecture

Handling of public cloud as a secure device in context of rail infrastructure is not solved.

Public cloud providers typically do not allow to install own IT security solutions.

6.14.3 Performance, reaction time and availability

The fulfiiment of requirements of especially safety-relevant FS compartments to the underlying
software from view of performance, reaction time and reliability in the runtime behaviour for each
timepoint over long periods of several years is not yet experienced in the context of public clouds.
Such requirements (performance, reaction time) do not affect the safety but the availability of the
FS.

Example:

If a SW component does not wake up and react in the required time-range of 20-50ms this
misbehaviour would be identified by the SE and would lead to safe reactions and perhaps to a stop
of the safety critical FS compartment(s).

6.14.4 Integration and maintenance

Public cloud providers are not able to integrate rail systems with an updated version of the public
cloud. Handling of changes in the public cloud in context of integration with the rail systems is not
solved.

FP2-WP26-D-DBN-003-06 Page 78 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

6.14.5 Business Case

Comparison of costs for running rail systems over decades within a public cloud with costs for private
cloud has not been done.

6.14.6 Responsibility

How to handle the situation that changes or instabilities of the public cloud lead to reactions on side
of the rail systems and in consequence to impact onto the rail operation (e.g. as stopping of trains
due to safe reaction of failed FS compartments)?

6.15 CERTIFICATION

In context of certification the main goal is to define the safety- and security-architecture of the
different layers within the computing platform in such a way that changes in non-safe parts like the
COTS based hardware or in common SW layers like the virtualization can be handled without impact
onto safety- and security-certification of the Functional Systems running above. This is in the scope
of the SP PRAMS domain that is currently working on a document “Evolution Management of safety
related systems” [17]. Further findings and recommendations from study on modular certification and
homologation can as well be expected in the upcoming R2DATO Deliverable D26.4 [20].

6.16 CONCLUSION AND OUTLOOK

The situation “various Functional Systems running aggregated on same computing element” has a
lot of new challenges affecting the architecture, interfaces and processes which have not been
addressed so far by standardisation as, e.g., EULYNX, which is up to now focused only on the
trackside object controller.

The basic results of our investigations show that essential architecture aspects depend on the
specific solutions for SE and VE:

1) The grade of HW independence is SE solution specific and depends on the safety concept of
the SE. Different HW related SRACs of different SE solutions require different NHA variants with
even specific direct dependencies to the interface 12 to the physical hardware and interface 13
extension to the SE running above 3.

A generic HW independent solution of NHA is not possible for different SE solutions due to SE
solution specific dependencies at the interfaces 12 and I3 extension.

2) The rules for handling of FS compartments in context of installation and update on side of the
Platform Management depend on the specific SE solution (as e.g. 2003, 2x2002, ..).

3) The detailed solution for the SW orchestration on side of the Platform Management depends on
the specific VE solution.

4) The technical SW architecture for realization of NHA depends on the specific VE solution and
belonging Host OS.

5) The details for clarification of the overall architecture for IT-security according to IEC 62443
depend on the specific VE solution.

6) The technical quality of guaranteed resource isolation and performance depends on the
specific VE solution and must be proven individually for each specific SE solution.

FP2-WP26-D-DBN-003-06 Page 79 of 171 25/07/2025

m Contract No. HE — 101102001 é

=urope's ~ail

Summary:

The depicted architecture and principles of interfaces 12 and 13 are generally independent of the
specific virtualization environment and specific hardware and safety layer implementations (as long
as certain requirements are met as detailed in Section HLPI Requirements). However, specific safety
layer realizations may impose specific requirements on the NHA. Hence there will possibly not be
one single NHA realization. Further studies are needed to explore how the NHA requirements for
different safety solutions can be harmonized or potentially omitted altogether.

If several different SE solutions shall run on the same VE solution, it's necessary to handle the SE
solution specific aspects in context of “HW related SRACS to fulfill by specific NHA functionality” and
HW dependency individually for each SE solution.

The figure below shows the specifics in the architecture according to interfaces 12, 13 and to the
Platform Management.

e [e ——

Functional System Functional System

SE solution 1

Virtualization

Environment “ Platform

Figure 38: Specifics in architecture

Even if the interfaces 12 and 13 depend in detail on specifics of the SE solution it's necessary and
possible to define the functional overall architecture for the Shared Services, Platform Management
and Functional Systems.

And the topic of “best quality in resource isolation” needs practical investigation to identify feasible
solutions for VE.

FP2-WP26-D-DBN-003-06 Page 80 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

7 APPLICATION-LEVEL PLATFORM INDEPENDENCE (ALPI)

7.1 INTRODUCTION

The main objective of the ALPI Interface, used in the MPC modular platform, is to simplify the design
of a generic "functional application" that realizes a Business Logic in the railway sector.

The purpose of the interface is to allow application engineers to focus on solving problems closely
related to Railway Functional Applications, delegating part of the solutions to problems concerning
safety, security, HW/SW integration, deployment, and maintenance to the underlying layers of the
MPC architecture. The interface also aims to allow the use of standard COTS solutions as much as
possible, to facilitate development of Business Logic by different suppliers.

The proposed ALPI interface shall minimize the impact on the development of runtime services,
providing the characterization of the services through configuration values (see REQ-ALPI-016), that
define the characteristics of safety, security, and management functionalities for functional
application SW orchestration. This simplifies the interface on the functional application user side,
hiding the complexity of the solutions adopted in the MPC architecture to ensure the required levels
of safety and security (see REQ-ALPI-04).

The ALPI interface makes it possible to use different MPC platforms from different vendors, enabling
extensive use of standard IT solutions. reuse of COTS products, adoption of innovative solutions
provided by the market, especially in relation to developments in the fields of Operational
Technologies (OT), Information and Communication Technologies (ICT), Safety and Security
Management.

This chapter deals with basic assumptions, preconditions, and cornerstones necessary to build and
specify an APl used by applications with safety relevance from CENELEC Basic Integrity up to SIL4.

It reflects possibilities and ideas but does not intend to head towards a specific direction, as this shall
be left to the vendors of the APIl. However, the suggest approach is to promote the adoption of a
common high level API set, providing the same functionalities, eventually with different semantics
harmonized with the introduction of adapters.

The discussions presented in this chapter are based on the inputs from the SP CE domain
(chapter 3.7), the architecture proposal in WP26’s first deliverable [18] and the ongoing work in
WP26 itself.

The following description includes aspects related to the "programming interfaces" and related to the
definitions of needed functionalities from the view of a Functional Application. The descriptions cover
both runtime services and off-line configuration.

With reference to safety, the descriptions refer to the 14 interface in the case of Functional Application
with Basic Integrity Level, while they refer to the |5 interface in the case of safety-related functions.
It is assumed that all 14 services are provided by the RTE, so 14 coincides with RTE. The Safety
Related 15 interface contains the restricted subset of 14 services compliant to CENELEC rules and
additional safety services provided by the Safety Layer, needed to tranparently manage safety
requirements.

The ALPI 15 interface cointains the transparent safety management of the replicas when needed.
The off-line configuration allows the proper selection of the safety services. The configuration knows
the nature of the FA: if it requires safety services or not, OR if it requires |15 or not.

FP2-WP26-D-DBN-003-06 Page 81 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

7.2 CORNERSTONES OF ALPI

To achieve platform independence on application level, the API serving the application must provide
all necessary safety-related and non-safety-related interfaces and resources for fulfilling the
application functions including diagnosis, logging, and monitoring.

Another basic aspect for platform independence is, that certain architectural principles are shared.
Otherwise, standardisation would be hard, not to say impossible. As a result of this, also the
behaviour on the other platform interfaces must be specified with respect to the goal since this is a
necessary pre-requisite for full interoperability.

Furthermore, Platform independence requires a standardised language to specify the application’s
deployment-configuration in a platform agnostic way. During integration of the application with a
specific platform, the platform-agnostic application deployment-configuration is then
translated/converted into a corresponding platform specific application deployment-configuration.

The process related to the deployment and configuration should be managed using a “model driven”
approach. The model must provide the rules and procedures for the aggregation of the elementary
basic elements necessary for the incremental construction of the subsystem layers. For each level,
the minimum constituent elements, i.e. the “basic components” are identified and their use and
integration is described via data structures. Note that, this translation or conversion is not an easy,
automatic task as it needs to deal with technical functionality as well as with safety principles and
fulfilment. Common standard tools must be used during the process to configure components and
their aggregation.

7.2.1 Main principles followed for the ALPI's definition
The three guidelines that are adopted in this document are listed here:
e The implementation of Business Logic should be as easy as possible.

e The implementation of Business Logic should be as standard as possible (see REQ-ALPI-
02).

e The Business Logic should be easily integrated and reused.

7.2.1.1 Functional Interface goals
These goals are achieved through a functional interface that ensures:

a. Independence: ALPI shall allow developing an application regardless of the SW/HW of
the underlying layers (see REQ-ALPI-01)

b. Transparency: Transparency of the complexities related to safety and security
architectures/mechanisms (see REQ-ALPI-06)

c. Compatibility and Portability: ALPI shall allow running the same application on different
commercial of-the-shelf platforms, using standard HW/SW basic components (see REQ-
ALPI-05)

d. Flexibility: maximum flexibility shall be allowed in case of Non-Safety Related Functional
Application to take full advantage of the evolution of ICT and OT technologies.
Constraints that limit the use of products with new technologies developed in the COTS
environment should be avoided; however, solutions/products that favour a high level of

FP2-WP26-D-DBN-003-06 Page 82 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

standardisation in the development of BL should be recommended. For Safety Related
Functional Application restrictions are to be considered because of the compliance to
safety standard (see REQ-ALPI-03).

7.2.2 Previous Work as discussed in D26.1

With reference to section 2.3, several pre-existing documents expressing previous thoughts on the
topic influenced this document, especially these documents:

¢ PI-API DB/Thales/Sysgo/Fraunhofer/... [3]
e PI-API DB/SMO [4]
e OCORA papers [5], [6], [7], [8], [9], [10], [11], [12]

Note that the referenced documents were taken as an inspiration, and not as an ultimate truth.

7.3 STRUCTURE OVERVIEW

Common Basic Application-Level Set of
Assumptions Platform Deliverables for
g Ingredients the Integrator

Figure 39: High Level Process of Application Development

Chapter 7.3 tackles the endeavour in 3 different stages:
e “Common Basic Assumption” (see chapter 7.3.1)
e “Application-Level Platform Components” (see chapter 7.3.2)
o “Set of Deliverables for the Integrator” (see chapter 7.3.3)

Chapter 7.4 contains a description of the models to be adopted and the evaluations of the impact on
the ALPI interface regarding safety, security, maintainability, orchestration.

7.3.1 Common Basic Assumptions

/ Common Basic Assumptions \

s N N
Architectural Platform Services Platform
Assumptions (as part of the ALPI) Behaviour Application-Level Set of
~ SN - Platform Deliverables for
« N ™ Components the Integrator
Platform Implementation Assumptions towards the
Components Functionality

S i ~/

Figure 40: Common Basic Assumptions Overview

FP2-WP26-D-DBN-003-06 Page 83 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

This paragraph summarizes basic and agreed assumptions. As a goal, a general direction of the
result should be imaginable after reading this section. For each assumption an impact evaluation on
ALPI and on Functional Application is carried out in advance.

7.3.1.1 Architectural Assumptions

Following an API usually also means to adhere to a certain architecture or, at least, to some basic
architectural concepts. This paragraph tries to summaries exactly those concepts in a high-level
description.

The main goal of ALPI is the standardization of the development of a Business Logic. It is assumed
that a Business Logic consists in the implementation of one or more Functional Applications based
on services provided by ALPI.

1. Each Functional Application consists of one or more “processes" as defined in the
glossary.(see 3.7.2 and REQ-ALPI-022, REQ-ALPI-025, REQ-ALPI-026).

2. The platform can be assessed against relevant standards (as at least CENELEC EN50126 /
EN50716 / EN50129 and additional ones as EN50155 for on-board). These standards
influence architectural decisions for the modular platform concept. Functional Application and
ALPI must be compliant to relevant CENELEC standards. (see REQ-ALPI-024)

3. Redundancy for safety is supported, depending on and controlled via configuration. ALPI 15
provides services that allow a Safety Related Functional Application to transparently manage
redundancy for safety.

4. Redundancy for availability is supported, depending on and controlled via configuration. ALPI
14 provides services that allow a Functional Application to manage redundancy for availability

5. Communication is message-based. ALPI provides services that enable communication in a
single, standardized, common way.

6. Run-To-Completion scheme within a (sub)process. ALPI provides services that allow the
Functional Application to adopt the RTC scheme. (see REQ-ALPI-027)

7. Replica deterministic behaviour. Deterministic behaviour of a Functional Application is
transparently assured inside ALPI services, additional services allow a Functional Application
to do checks.

8. Clear application lifecycle, minimum: Start/Init — Operate — Stop/Shutdown. ALPI provides
services that allow the Functiona Application to adopt the lifecycle scheme.

7.3.1.2 Platform Components

Platform components are the basic components, tools and libraries needed to implement, test and
run applications, such as:

e Toolchain (e.g. validated compiler, linker, diagnosis, tracing) (see REQ-ALPI-029)
e System Libraries (e.g. glibc, crypto-libs)

e Coverage- and Test-Tools

FP2-WP26-D-DBN-003-06 Page 84 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

These components are provided by the Run Time Environment and may be specific, depending on
the RTE. ALPI provides a standard “model driven” description that allows the integration of the
Functional Application with the needed ingredients in a common standard way.

7.3.1.3 Platform Services
The platform services discussed here are to be seen as part of the services provided to an application
by the “Independence API”. These include but are not limited to:

e Logging (e.g. syslog) (see REQ-ALPI-019, REQ-ALPI-036)

e Process control (e.g. create, clone, delete)

¢ Memory management (e.g. malloc, free)

¢ Timing (e.g. time of day, sleep, different clocks) (see REQ-ALPI-030)
e Communication (e.g. sockets, message queues)

¢ Maintenance-related diagnostics and errorcodes (see REQ-ALPI-038)
e Security functions (see REQ-ALPI-014)

e Persitency functions

Note that parts of these services could be safety relevant. For the correct usage of these services
both in the BIL and SIL cases, ALPI will allow to specify the Safety Integrity Level to be used through
the configuration, keeping the runtime interfaces as unchanged as possible,.

Due to the trade-off between the maximum flexibility for non-Safety Related Functional Application
and the constraints imposed by the CENELEC standard, ALPI will provide the Safety Related
Functional Application with a restricted subset of the available RTE services.

7.3.1.4 Functionality Implementation Assumptions

In this section, assumptions are proposed on the functionalities that ALPI must provide for the
development and implementation of an application. These functionalities must also take into account
any constraints deriving from the use of the modular platform.

The assumptions considered concern architecture, life cycle, communications, diagnosis.

ALPI makes assumptions regarding how Applications will work and to how they are structured and
may favor certain implementation concepts that doesn’t relate to MPC.

For example, the usage of a gateway concept for the implementation of safe protocols and
specialized data services for diagnostics are handled here.

Note that these kinds of assumptions and rules need to be well defined within the user
documentation.

It is assumed that ALPI will provide a Functional Application with the services based on the following
functionalities provided by the modular platform:

¢ Configuration for runtime behavior with reference to execution environment, Redundancy
Safety Integrity Level, Security Integrity Level, Communication.

o Lifecycle: Start/Operate/Stop phases. (see REQ-ALPI-031)

FP2-WP26-D-DBN-003-06 Page 85 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

Non-Safety Related Communication (i.e. OPC/UA or SNMP communication).(see REQ-ALPI-
032)

Safety-Related Communication (with different protocol implementations).
Logging scheme.

Diagnosis.

7.3.1.5 Platform Behaviour

The behaviour of the modular platform needs to be well defined within the user documentation. Even
if the implementation details do not need to be known, basic behaviour and maybe also limitations
need to be known from the application developer.

ALPI will provide a Functional Application with services that allow the characterization of the platform
behaviour in relation to:

7.3.2

Replica management

Communication synchronization

Timing/synchronisation rounds

Platform health indication and management data available
Logging/diagnosis environment & behaviour

External interfaces (see also chapter 8)

Application-Level Platform Components
ﬂpplication-Level Platform Ingredients\
s - - N O ™
Fu::t'iac;;cal Certification
Common Basic Application Artefacts . LD
A p \. /N J Deliverables for
ssumptions the Integrator
~ N O
Platform
Configuration Independence
API - ALPI

\ o /)

Figure 41: Application-Level Platform Ingredients Overview

An application consists of different parts, which are drafted in Figure 41 above.

The main parts are:

FP2-WP26-D-DBN-003-06 Page 86 of 171 25/07/2025

Generic Functional Application
Configuration

Certification Artefacts

@2 Contract No. HE — 101102001 e‘

—urope's

Note that this description shall be explanatory only, a real realisation of such a platform can also add
other parts, if needed.

7.3.2.1 Generic Functional Application

The Generic Functional Application implements a certain Business Logic (BL) into a piece of
software, that might be accompanied by SRACs (from RTE) (see REQ-ALPI-020), if necessary.
“Generic” refers to the fact, that the goal is to enable development of different applications
independent of a concrete execution platform (see REQ-ALPI-01). Additionally, the same application
(at least source code) could also be used on platforms of different vendors if this is beneficial and
necessary.

/ Application-Level Platform Ingredients \

Ve

Generic Functional Application \
Set of

Deliverables for
the Integrator

Common Basic
Assumptions

Business Logic

\\

Figure 42: Generic Functional Application Overview

As a general concept, the platform shall allow to run applications with different levels of criticality in
parallel. This so-called “mixed criticality” approach decouples the lifecycle of applications of different
SIL levels from each other and shall ease the process of changing, especially for basic integrity
applications (see REQ-ALPI-013). Of course, this goal can only be reached if the safety solution
supports it.

Note: changing of functionality and using same functions on a different RTE without doing anything
regarding safety assessment is currently not possible and needs further study.

7.3.2.1.1 Business Logic software — ALPI services
A Business Logic SW is composed of one or more specific Functional Application SW (FA), located
and executed in HW independent Functional System Compartments.

ALPI provides each Functional Application with services to communicate with

o external entities via a group of interfaces referred to as “I1”. 11 contains the “Ol” interface
that is used to manage (monitor, control, diagnose, configure) the computing environments.

o other remote/local Functional Systems to manage safe/non-safe functional application data
necessary to realize an application. This communication-based interface is referred as 10.

FP2-WP26-D-DBN-003-06 Page 87 of 171 25/07/2025

REDA TO Contract No. HE — 101102001 e‘

=urope's
Infrastructure (IT-sec, orchestratior‘[,_ update, diaghosis)
— J___ 1" _[______—_ >
Functional System 1 Functional System 2
Functional Functional -
Application 1 e Application 2
. |0i)
Application Application .
Execution Execution
Environment 1 Environment 2
Compartment X Compartment Y

Figure 43: Functional Application Interactions

It is to be noted that ALPI shall standardize the communication interface, providing basic standard
functions that allow communication with both external entities, local/remote systems using always
the same common services. The type of the runtime communication is selected via a configuration
specification.

A Functional Application SW consist of basic components that implement a Functional Application
Task (FAT) (see REQ-ALPI-07). FATs use ALPI’s services for communication.

Communication with external entities

FA1 FA2

FAT]

SE

RTE RTE

Figure 44: Functional Application Task interactions

ALPI provide each Functional Application Task also with all RTE services necessary for task
management and transparently interacts with SE in case of Safety Related Functional Application.
ALPI services are available as Function Call and as Configuration data.

Depending on the type of the services, they can be classified into categories.

FP2-WP26-D-DBN-003-06 Page 88 of 171 25/07/2025

m Contract No. HE — 101102001 e‘

=urope's

Functional Application

Interface I5 I5: interfaces to RTE and to SE for the

" following category of services

Communication services with external
entities

" | Safety Related services (runtime transparent, CFG
only)

Services directly mapped on RTE (subset-SIL

SE mapped | ompliant)

Safe services I p— 5
AT Communication services between FAT (INTER or
INTRA FS)

b a% .
t

FAT
I from map to
EXT. ped FAT

Figure 45: ALPI categories of services

7.3.2.2 Configuration
Configuration data is consisting of at least two fundamental parts:

e engineering data: needed for the business logic to work. Often the engineering data itself is
again partitioned into
o market/customer specific data
o into market/customer specific data and product generic data
¢ RTE configuration data for software execution (see REQ-ALPI-033).

For all RTE specific configuration a strong requirement would be, that all platforms from different
vendors share a common RTE syntax and semantic, so that running the same application on
different platforms is as easy as possible.

Examples for engineering data configuration are:

o Data Base of IXL rules to be used/checked during BL runtime execution

e Logical endpoints that identify all (external/internal) entities that are involved in the
command/control process implemented by a FA

o safety mechanism (integrity check, version control/congruency) to ensure that the BL and the
safe system is consistent

Examples for RTE specific configuration are:
e Scheduling, execution budget
e Communication endpoint configuration
¢ Communication protocol details
e Redundancy configuration

e Voting algorithms

FP2-WP26-D-DBN-003-06 Page 89 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

e Security algorithms

7.3.2.3 Certification Artefacts
For a successful certification, a set of artefacts is needed:

¢ RTE artefacts
o RTE SRACs, the Safety Related Application Conditions

= Need to be fulfilled by the application, or “transferred” to the customer (see REQ-
ALPI-020, REQ-ALPI-021)

o RTE Security Conditions
= Have to be defined and implemented from the RTE

= But need to be fulfilled by the application (according to definition) to achieve a
certain security level assessment

o RTE certification + Safety case

= On system level, so that it can be treated as “black-box” from the point of view of
the Functional Application

o RTE rules
= Describes details about what to do and not to do on application level
e Application artefacts
o An application specific safety case
o Proof of application to follow the “RTE rules”
o Proof of application to follow the SRACS coming with the RTE

o Proof of application to follow the Security conditions

7.3.2.4 Platform Independence API - ALPI Interface

The ALPI interface (Application-level Platform Independence, previously: Pl APl — Platform
Independent Application Programming Interface) is the concrete implementation how the Functional
Application utilizes the underlying platform. It contains syntax and semantic details for each and
every purpose needed from the application.

As outlined in the chapters above, more than only this ALPI is needed to realize the goal of portable
applications, such as architectural preconditions and concrete platform behaviour. All that kind of
necessities, including ALPI, need to be described in detail within the user documentation. For all
safety relevant parts, additionally so-called SRACs (Safety Related Application Conditions) need to
be clearly defined and explained.

FP2-WP26-D-DBN-003-06 Page 90 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's
/ Application-Level Platform Ingredients\
/ Platform Independence API- ALPI \

s N N

Approaches, Set of

Common Basic gl (:thods & SRACs Delive(raat::l’es for
: eferences
Assumptions \ J J the Integrator

4 N 7 N\

Function Calls Models

/o \

\S 2/

Figure 46: ALPI (Pl API) Overview

In order to have a consistent top-level description, ALPI shall provide a detailed definition of the
following topics:

¢ SRAC:s in different contexts, e.g.
o towards the RTE
o towards the HW
o towards the application developer

o Note that it is very likely, that different platform variants come with additional, specific
SRACS (hopefully, just a few...)

e Models (see REQ-ALPI-017)
o Programming Model
o Communication Model
o Configuration Model
o Security Model
o Maintenance/Diagnosis Model
e Approaches, Methods and References
o Testing and Integration Approach
o Testing Suites, e.g.
» generic reference for a modular platform
» ALPI/“PI API” test suite
¢ Function Calls (syntax and semantics, variants for different SIL-targets)
o Memory management
o Process management & lifecycle
o Timing
o communication

o diagnostics

FP2-WP26-D-DBN-003-06 Page 91 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

o HW IO (for embedded HW, e.g. on-board)
o Persitence and security functions

©)

7.3.3 Set of Deliverables for Integrator

After the development and testing is finished, a set of deliverables is bundled for the integrator. This
set is suitable to enable the integrator to enable the application on a modular platform instance.

e Application
o Depending on the delivery model, in source-or binary form
¢ Configuration Data
o Engineering Data
o Application-specific RTE configuration data
o Certification Artefacts
o From RTE vendor and from application vendor
¢ Integration of application with modular platform components
o Depending on the concrete case: RTE, OS, HW, Virtualization, etc.

o Test specs/cases to perform integration wherever possible

7.4 ALPI DETAILS

Based on what is reported in the chapter 7.3, this section provides further details about the
architecture, layers, and models used to describe the ALPI interface. Descriptions are based on the
inputs from the SP CE domain (chapter 3.7), the architecture proposal in WP26’s deliverable [18],
[19] and the ongoing work in WP26 itself.

741 Assumptions

Application developers should be able to focus on implementing the application logic. All safety and
fault tolerance mechanisms not inherent to the application's logic — specifically redundancy, voting
and persistence — shall be implemented in, and transparently handled by the platform.

The application-level platform independence (ALPI) interface provides the standardised abstraction
of all platform’s specific hardware and software — allowing for portable applications.

ALPI should also allow the aggregation and the interaction of Functional Application with different
Safety Integrity Level into a single Functional System.

7.4.2 ALPI architecture and layers
From a functional point of view, ALPI interfaces 14 and 15 are part of RTE and SE respectively.

ALPI provides the 14 interface in the case of Basic Integrity Level FA. (see REQ-ALPI-011)

FP2-WP26-D-DBN-003-06 Page 92 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

ALPI provides the I5 interface in the case of Safety Integrity Level FA that require the use of a Safety
Environment that ensures SIL using composite safety mechanisms. (see REQ-ALPI-012)

ALPI also, through 14 and 15, allows:

e the interaction of FAs with the communication system, via platform, towards the 10° interface
that manages communication with other FAs and external systems

¢ the interaction of FAs with the |1 interface and the entities outside the platform, for the
management of activities related to orchestration, diagnosis, security and time, update.
These activities are mainly implemented in RTE layer and are transparent to the ALPI runtime
interface.

Owofecops 3 EeeEenmsanseeRs

---------------- Functional System !
v : @
1)

Functional Application(s) < communication via platform

-
‘Basic Integrity <'52 Safety

[safety Layer |

"
Interfaces externaQ

Runtime Environment
(operating system, platform to the Platform : External E
services, communication, security [Frem——] ' entities for: |
services, etc.) i ORCH |
<:> [Diagnostics] : MON i
[Security & Time] E DIAG E
Application-Level Platform Independence (Update | I :

Figure 47: Functional Application, ALPI, RTE

7.4.3 Generic Functional Application

Functional Applications realize a Business Logic. They are part of a Functional System and are
executed on the Runtime Environment inside a computing platform. FA use runtime services
provided by ALPI interfaces 14 and 15.

610 is not in scope of this deliverable

FP2-WP26-D-DBN-003-06 Page 93 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

—urope's

7.4.4 Interface 14 and RTE

Functional System Outofscope 7777777

@ other :

BIL Functional Application(s) < e applications

rand systems

7\

)
Basic Integrity

1
Interfaces externaQ

to the Platform E External
[or i entities for:
chestration '

)
¢> (Dpiagnostics]] <:> %Rg,:l i
] i

(operating system, platform
services, communication, security
services, etc.)

1
1
1
1
1
1
1
1
1
1
)
)
1
)
1
1
1
]
]
1
)
]
1
. Runtime Environment
)
]
1
]
1
)
]
1
]
1
)
]
)
1
]
)
]
1

.
Application -Level Platform Independence [Security & Time - DIAG
[Update R —— !
Computing Platform
Figure 48: Interface 14
14 goals:

e |4 shall standardize the access to RTE services, allowing FA developers a simpler and
common way to develop FAs.

e |4 is a “runtime” interface, and it is assumed not to have “deployment interfaces”. The basic
deployment of an FS, and therefor a FA, is handled by the RTE and does not affect the
application.

e |4 provides FAs with all standard services for process management inside a RTE in relation
to memory and time.

e 14 provides FAs standard services to communicate with other applications and system. The
communication is realized via platform with 10 interface that is out of scope.

e |4 provides FAs a configuration structure to define specific behaviour of all services

e |4 provides FAs a configuration structure to identify every communication node of other
application or system needed to realize a Business Logic.

FP2-WP26-D-DBN-003-06 Page 94 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's
7.4.5 Interface I5 and SL

Oulofscope A e

Functional System @ ! other |
SIL Functional Application(s) < e PR - e applications |

'and systems |
@ Safety I

: '

| |

| z

; Restricted 14 :

1 L

1 1

[. N /D

i|| Runtime Environment oE ; Interfaces external |~/ —--oooooooo____
: " '

i|| (operating system, E to the Platform L nEt)i(ttiz;nfa;r- :

E platform services, Safety ! Orchestration l ' ORCH = 4

! communication, Layer E<“:> (Diagnostics | <:>: MON i

i|| security services, etc.) i ' '

N V| [security & Time | . DIAG

'] : :

i H Update || e -

! Application -Level Platform Independence 1

) 1

1 1

1 1

Figure 49: Safety Integrity ALPI interface 15

I5 provides runtime services to SIL FA. (Ref.Figure 49)

I5 goals:

e |5 shall standardize the access to SE services, allowing to FA developer a simpler and
common way to develop SIL FA.

e |5 is a “runtime” interface, and it is assumed not having “deploy interfaces”. The basic
deployment of an FS, and so of a FA, is handled by the RTE and does not affect the
application.

e |5 provides FAs with all standard services for process management in relation to safety
related function that implement safety mechanisms to realize composite safety, such as
replica synchronization and execution.

e |5 provides FAs a configuration structure to define SIL of services that transparently manage
the safety mechanisms.

7.4.6 Implementation models

7.4.6.1 Functional Applications, Tasks and Deployment Configuration

Functional Applications implement the logic of typical railway functions. They consist of one or
multiple Tasks, each having distinct functions. Depending on a Task’s function in the system, it may
be restricted to use the corresponding limited subset of the ALPI and must comply with the applicable
defined set of standardised safety related application conditions.

To achieve deployment independence, every Functional Application shall include a platform-
agnostic deployment configuration (see REQ-ALPI-018) that defines, for each Task, in a
standardised and abstracted way, its safety, resource (e.g., timing, memory, etc.) and
communication requirements.

FP2-WP26-D-DBN-003-06 Page 95 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

When integrating a Functional Application with a specific platform instance, the platform-agnostic
deployment configuration shall be translated to a platform specific application configuration.
A functional independence is required between different tasks (FAT-n) and shall be demonstrated.

FS-1(1) :
1 Functional Application

| FAT, FAT, | [FaT, i
siL4 sIL2 BIL '

Translation of
platform-agnostic
configuration to
platform specific
configuration

Platfor agnostic Deployment
Configuration

CP-1(1) CP-2(1) CP-3(1)
FAT-1(A) FAT-1(B) FAT-2(A) FAT-1(C) || FAT-2(B) FAT-3 :

siL4 SiL4 SILZ SiL4 S1L2 BIL

| 15] | 15 | 15 | 14
SEAA SE-1A SE-1A

RTE-1(1) RTE-1(2) RTE-1(3)

ALPI ALPI ALPI

VCE/PCE 1 VCE/PCE 1 VICE/PCE 1

Figure 50: Functional Applications, Tasks and Deployment Configuration

7.4.6.2 Messaging
Exchanging information via messages is a key service of the platform. The messaging concept shall
follow the below key paradigms:

e Location transparency: It shall be transparent to a Task of a Functional Application whether
it is communicating to a local entity (i.e., residing on the same local platform instance) or a
remote entity (i.e., residing on a remote platform instance);

¢ Replication transparency: It shall be transparent to Tasks of a Functional Application whether
they themselves, and the Tasks of the Functional Application they are exchanging messages
with, are replicated or not;

e Authentication and authorization transparency: Authentication and authorization of entities
shall be transparent to Tasks of a Functional Application, so that Tasks of a Functional
Application can trust that the entities they are receiving messages from or transmitting
messages to are the entities they claim to be;

Messages between Tasks of a Functional Application or with Tasks of another Functional Application
shall be exchanged via Messaging Relations between the respective Tasks. Messaging Relations
shall be managed by the platform. They can be joined, or disjoined, registered or subscribed to.
Once a Messaging Relation between two entities is established it can be used to exchange
messages.

A Messaging Relation shall have various properties related to the usage of voting, the usage of
specific Safe Communication Protocols, quality of service, etc.

FP2-WP26-D-DBN-003-06 Page 96 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's
Functional Application A Functional Application B
b Tam Task L Task Task Task
5 Tas 4—EI-=J’ T & —T——> Ta Tez @15 Tas
SiLa i SILa BIL

<& MWessaging Relations

Figure 51: Messaging Relations between Tasks

Depending on the replication of the entities involved in a Messaging Relation, the message exchange
may involve message voting and/or distribution — both shall be transparently handled by the platform.

-
Task Task
T ”‘ T2
5|L4\ /
Task Task
T voting distribution R
SiLa |
| ISEE——
Task
T ¢
SiLa
. ./

Figure 52: Message voting and distribution

Uni-directional Messaging Relation (publish/subscribe): the transmission of messages from one or
multiple publishing Tasks to one or multiple subscribing Tasks without implicit message
acknowledgement from the receiving side. Uni-directional Message Relations may have exactly one
publisher or multiple publishers.

Key characteristics:

¢ Posted messages (on the same Messaging Relation and by the same publisher) shall be
delivered to all subscribers in the exact same order as they have been published;

¢ Missing messages shall be identified by the platform (e.g., through the usage of message
sequence numbers or some other platform-specific mechanism). The subscribed entities shall
be notified by the Platform whenever there are missing messages;

e Messages shall be time-stamped by the platform, so that subscribers are able to determine
how old messages are, and whether they should still be processed or discarded, etc.

Bi-directional Messaging Relation (request/respond): the transmission of messages from exactly one
requesting Task to exactly one responding Task, with an explicit response message to each request

FP2-WP26-D-DBN-003-06 Page 97 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

message. A Bi-directional Messaging Relation can be used for requests from the requesting Task
once both sides have joined the Messaging Relation.

Key characteristics:

e Posted messages shall be received by the receiver in the exact same order as they have
been sent. This applies to both messages sent by the requester, and the response messages
sent by the responder;

e The platform shall deliver messages (both requests and responses) exactly once depending
on the performance achievable by the MPC implementation’ . It is to be investigated the
impact of this need on the design and architecture, and the possibility to adopt less stringent
constraints, consistent with safety requirements

o Messages shall be time-stamped, so that the involved Tasks are able to determine how old
messages are, and whether they should still process or discard them, etc

e The platform shall inform the requesting Task when the responding Task has joined the
Messaging Relation (for the first time, or, e.g., after a crash)

7.4.6.3 Task and Thread Scheduling

Platform implementations shall have the maximum freedom regarding the scheduling of Tasks of
Functional Applications, as long as a minimum set of design principles are met:

e Task replicas and their threads shall be scheduled based on the following kinds of triggers
(or combinations of theses):

o timer-based, i.e., in configured regular intervals, or in the form of one-shot timers;
o event-based, i.e., upon receipt of (certain types of messages);

o timer- and event-based, i.e., the Task obtains execution time in regular intervals, or in
the form of one-shot timers, only if (certain types of) messages have (or have not) been
received.

(see REQ-ALPI-028)

7.4.6.4 Time

7.4.6.4.1 Timestamps and Task replication
The platform shall be able to provide timestamps with the following three different quality attributes:

Unsynchronized Timestamp: corresponds to the time at the point when the replica requests this (and
for which different replicas of the same Task may obtain a different
result).

Synchronized Timestamp: the exact same time for all replicas of the same Task requesting this
(even if there is a time lag between the different replicas in when this

7 The exact delivery of messages is hard to achieve. They are very costly and require a lot of coordination. Particularly
when low latency is required

FP2-WP26-D-DBN-003-06 Page 98 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

is requested). This is especially important if the timestamp is used in
any voted output message.

Precision: The precision of timestamp is application dependent and accuracy
varies accordingly. Precise timestamps are computationally much
more expensive than more imprecise ones. This has an impact on
requirements and development.

Tasks must ensure that they only use the unsynchronized timestamp in cases where it doesn’t
impact any potentially voted output. The synchronized time may have a lower resolution than the
unsynchronized time.

Task repiica
exacuion jiner
Funcponal —Task A
Application A o
.)
[TaskA :
A A 3
TaskA* 1 P
A T A s
2 S ' 1 | 1 ' E: *
1] 1 1 | .
unsynchronized time AR T AL A 3 |
e L T B B i e T e e e ™> t
W, Vi BEIERE - "
) 1 1]
d%erant I
Imestamps L o3 A
] 1 '
synchronized time P t
raducad resoluion |)
same
imesiamps

Figure 53: Unsynchronized vs. replica synchronized time

7.4.6.4.2 Timestamps and Messages

For safety as well as for availability reasons, it is essential for Tasks that messages are not delayed
beyond a defined maximum message delivery time. The platform shall supervise the message
delivery time and inform interested Tasks in case the maximum message delivery time is exceeded.

The platform shall complement messages exchanged via Messaging Relations with timestamps,
allowing receiving Tasks to make decisions based on the age of a received message and possibly
take appropriate action.

To calculate the age of a message, the notion of synchronized platform clocks (also among
distributed platforms) is necessary. Whether messages are complemented with relative or absolute
timestamps is for further study.

7.4.6.5 Gateway Concept

To enable Functional Applications to communicate with external entities, a gateway concept is
required. platform internal communication, i.e., communication between Tasks running on the same
platform, uses Messaging Relations as described in the pervious chapter. In order to exchange
information between Tasks running on different platforms, a gateway is necessary. (see REQ-ALPI-
032)

FP2-WP26-D-DBN-003-06 Page 99 of 171 25/07/2025

m Contract No. HE — 101102001 6‘

=urope's

Key paradigms regarding external communication are:

¢ it shall not be visible to a Task of a Functional Application whether it is communicating to
another entity on the same platform realization or a remote entity;

e it shall be possible to deploy Tasks of Functional Applications on different platform
realizations without having to change the Task implementation;

e required safe or non-safe communication protocols shall be separated from the Functional
Application to allow independent evolvement;

e it shall be possible to add new protocols (safe and non-safe) when they become available.

Functional Safe Non-safe
Application A Platform Protocol Handler Platform Protocol Handler Platform

[| : i
E : ﬂ Application Layer

“Safe Communication Layéi

: . - v : : :

: . ; : : % ; : : ! :

] " " 0 — . ' " .

; ; g : : il %] B P/ b s

: : : H 5 P : A i ! Session Layer
; H H H H - H N] ;

C : : : : ' i :] . ¢

H H ' : H - i H H [PL] ;

Il 1 ' . ' : ' ' ' '

' ' H ' ' 1 > i ' '] '

' H g : H H] i H H 3 . R .

i ' ! | : : ' : : R [TCP/UDP Layer
'] H ' 1l i 3 ' i i e szzz: szzzzzzz: Ii:
| I i ') i i : | i : = P Layer
\ A5 it tarie —— o i Wlqr s ’ OO | N7 7 o HPRS, ek - - - =

Gateway [voing o asinge sale ouput
[PL] paylod

Figure 54: Gateway — contribution to protocol stack

The above scenario depicts a Task of Functional Application A sending a safety critical payload PL
to an external system using the gateway concept. The diagram shows how the different entities
involved contribute to the overall communications protocol stack toward the external entity.

The Gateway consists of three parts: the safe protocol handler, implementing the safety protocol
compliant with the required criticality (e.g., SIL4); the non-safe protocol handler implementing the
session layer protocol (e.g., FRMCS); and the platform services implementing voting to a single safe
output as well as providing the lower protocol layers e.g., UDP/TCP and IP.

7.4.6.6 Fault, error and failure handling and recovery

The chapter describes how faults, errors and failures shall be handled in context of replicated Tasks
and virtual/physical Computing Elements. The subsequent sections follow the terminology used in
EN 50129:2018. (see REQ-ALPI-037)

Term Definition in EN 50129:2018 Meaning in context of replicated Expected platform
Tasks behaviour
Fault Abnormal condition that could = Abnormal condition that could lead See section 7.4.6.6.1
lead to an error in a system to an error in a Task and/or

virtual/physical Computing Element.

FP2-WP26-D-DBN-003-06 Page 100 of 171 25/07/2025

MEDATO Contract No. HE — 101102001 6‘

=urope's

Definition in EN 50129:2018 Meaning in context of replicated Expected platform

Tasks behaviour
Error Discrepancy between a Task replica(s) and/or See section 7.4.6.6.2
computed, observed or virtual/physical Computing
measured value or condition Element(s) showing a discrepancy
and the true, specified or between a computed, observed or
theoretically correct value or measured value or condition and the
condition true, specified or theoretically correct

value or condition.

Example: A Task replica provides
different output than its counterpart
replicas (or no output at all).

Failure Loss of ability to perform as Errors of Task replica(s) and/or See section 7.4.6.6.3
required virtual/physical Computing
Element(s) cannot be mitigated by
restarting replica(s) or moving them
to other Computing Element(s). As a
result, Functional Application(s) are
impacted in the way that these lose
the ability to perform as required.

Table 5: Fault, Error and Failure in the context of replicated tasks

7.4.6.6.1 Fault Detection and Response

To what extent the platform performs fault detection is platform implementation specific.
Nevertheless, Task fault containment must be ensured by sufficient independence between Task
replicas (according to EN 50129:2018). It is also left to the discretion of the platform implementation
to decide whether a fault (according to EN 20129:2018) has to be flagged as an error.

7.4.6.6.2 Error Detection and Response
Errors shall be detected and handled according to EN 50129:2018. In addition, the platform shall
take the following recovery and informational actions:

Affected entity Actions

Task replica o Restart the Task replica, recover its state and re-integrate it with its
counterpart replicas.

¢ Inform interested Tasks about the affected Task replica failure.

Computing Element e Restart the virtual/physical Computing Element and recover or restart
all affected Runtime Environment instances and Task replicas,
recover their state and re-integrate them with their counterpart
replicas.

¢ Inform interested Tasks about the affected Task replicas failure.
Table 6: Error detection and response for different entities

In case all recovery actions defined in the above table are unsuccessful (e.g., due to repeated Task
replica and/or Computing Element failure, or because more replicas of the same Task are affected

FP2-WP26-D-DBN-003-06 Page 101 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

than the redundancy/voting configuration allows for), this results in a failure (according to EN
50129:2018).

7.4.6.6.3 Failure Response
A failure implies that one or multiple Task(s) are no longer able to perform as required. In this case,
the platform reaction shall be as follows:

¢ informs all Tasks that have a Messaging Relation with the affected Task

¢ informs all Tasks that have registered for diagnostics information about the affected Task

7.4.6.7 Communication Model

The ALPI interface assumes that communications made via the platform, using the 10 interface, are
not within the scope of this document.

With reference to Figure 47, the FA performs processing on input data and produces output results
that are managed through a communication system. Communication can take place either within the
FS or with other external FAs or systems. In order to facilitate and standardize the development of
the application, the ALPI interface shall provide a single model of communication services that make
it transparent to the FA whether the peer node is internal to the FS or it belongs to another external
system. The information that defines the node type, and therefore that allows the RTE layers to
implement the communication correctly, is specified in the configuration part of ALPI. The
communication services provided by ALPI, after appropriate configuration, allow to implement with
a single standard model, every elementary communication between the basic components (FAT)
constituting an FA.

ALPI communication interface is based on platform services based on messages as described in
chapter 7.4.6.2.

7.4.7 Certification

The discussion around this aspect of application-level platform independence has not started yet.
However, there is a dedicated subsequent task in this work package to study certification approaches
for modular platforms.

7.4.8 Safety

The MCP allows the management of non-safety related, Basic Integrity Level, and safety-related up
to SIL4 Functional Applications. In the case of non-safety related FAs, the FA uses all services
available in the RTE without restrictions. In the case of BIL, the FA uses only RTE services compliant
with BIL. In the case of SIL4, the Functional Application is implemented through the adoption of
mechanisms based on composite safety, which is ensured through redundant architectures
compliant with the standard (CENELEC EN50126 / EN50716). The services provided by 15 ALPI
effectively enhance transparency by consolidating safety-related data within a secure safety layer
safety layer.

The runtime consolidation of the safety-related data is executed through 15 using specific information
defined in the configuration part of ALPI.

FP2-WP26-D-DBN-003-06 Page 102 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

749 Security

The ALPI shall provide runtime Security functions in the scope of the Functional Application.

MPC’s Security related to external communication is managed end-to-end with TLS at network level.
It stops within the RTE, at kernel level, below 14/15. So, itis not in scope of runtime services of ALPI.

For the security functions in the scope of the Functional Application the ALPI shall provide runtime
and configuration services allowing FA to use security services, such as PKI management,
authentication management, cryptographic verification/validation inside FATs. (see REQ-ALPI-034)

With reference to the paragraph 6.8, security features should be implemented within each FS.
Depending on the solutions and architecture used, the impact on ALPI should consist in the use of
a standard interface provided by the IT-Security Layer and included in 14 (chapter 6.8.2), or an
integration in 14 of a specific interface towards a compartment dedicated to IT security functionalities.
(chapter 6.8.3).

7.4.10 Diagnosis

...

' Functional Application

! 15 14 :
: t t w) M | Shared
1 Monitoring <

A%

i SE RTE Data : Services
i ['

Modular i {T

; (= Platform K—

i Update Client Diagnostics Management ,

! Server '

i ALPI g

. CP |

, CPI:

Figure 55: ALPI diagnosis-provided through RTE at CP level

FA’s diagnosis data must be provided via the interface 11 (towards the Shared Services Diagnosis)
that is considered a central data sink. The ALPI provides runtime services and configuration
structures that allow direct and implicit collection of diagnostic data. This data will be transformed
within the Platform Management into 11 compatible format.

FA uses runtime ALPI’s diagnostic services to provide relevant diagnosis data for root cause analysis
and automated initiation of maintenance activities.

7.4.10.1 Diagnosis of the FA
Each FA shall provide diagnosis data about its own health state (e.g. about the health state of running
FATSs, the outcome of plausibility checks for the Business logic, ...).

FP2-WP26-D-DBN-003-06 Page 103 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

This FA diagnosis data, provided via ALPI services, shall be available to the FS to be sent to I1
Diagnosis Interface.

FA Diagnosis data is related to faults, errors and failures described in paragraph 7.4.7.6. Some of
these are detected at RTE level and aren’t in scope of FA. Relevant FA diagnosis data, detectable
at RTE level, to be provided towards Platform Management is:

e state of each individual FAT
e state of the communication between FATs

7.4.11 Maintenance

ALPI’s 14 and 15 are mainly runtime interfaces, not deploy interfaces. Maintenance and deployment
are done at FS level and are not in scope of runtime services of ALPI

The basic deployment of an FS is handled by the RTE (below 14/I5) and does not affect the
application.

The maintenance services are done through appropriate external interfaces. External entities
manage the ways to build, deploy and maintain a full MPC system and in particular FA & ALPI. (see
REQ-ALPI-035)

7.5 COLLECTION OF ToPics FOR FUTURE STuDY

This chapter lists several open topics with regards to Application-level Platform Independence (ALPI)
and its central ALPI interface for future study within the work package. The list is not expected to be
complete.

e enabling of the development of portable Functional Application, including standardized
configuration, update and other artefacts for deployment (see REQ-ALPI-07)

e Interoperability and reusability of applications from different suppliers, enabled by several
abstraction mechanisms, e.g. to achieve independence from a specific RTE implementation

e definition of acceptable migration effort from one platform to another (on a scale from binary
compatibility meaning zero effort, up to full redevelopment meaning maximum effort)
balancing all stakeholder needs, with a strict goal to minimize effort and dependencies where
feasible

e possibilities for identification and definition of harmonised SRACs

e integration of diagnostics interfaces for application usage (e.g. operation data coming from
the business logic)

e Versioning for all artefacts (also in the context of integration efforts in modular PRAMS). The
API shall enable evolvability but at the same time ensures stability and distinctive different life
cycles of applications (e.g. deployment).

e syntax and semantics of the ALPI interfaces
o documentation should contain examples to highlight sematics

o difference vs "should not use" & "cannot use" w.r.t. SILx

FP2-WP26-D-DBN-003-06 Page 104 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

o handling of different programming languages

o safety and fault tolerance and availability mechanisms shall be provided by the underlying
platform, transparently for the applications

e a generic communication model, independent from the actually used transport and from a
concrete deployment, shall be used

e be an enabler for safe and secure end-to-end communication, without the need to implement
explicit protocols within the application

e be an enabler for modular certification
o granularity and certification scope need to be developed based on the artefacts defined
o deployment and update scenarios for artefacts and platform components
o robust versioning scheme integrated into platform and interfaces
o forward and backward compatibility needs for interfaces needs to be described
¢ recording of application and platform events, also usable for juridical recording
e ageneric motivation and expectations towards standardizing an ALPI interface
¢ tools needed over the lifecycle: generic or specific or in-between?
o different targets & different safety levels

o what can stay the same? what needs to be different? where do we need to innovate?
what does the platform need to know/what needs to be configured?

o example: "vital memory data allocation" e.g. for lockstep systems is a special thing that
does not need to happen in other types of systems or with less requirements towards
reliability

7.6 CONCLUSION AND OUTLOOK

While previous work and the discussions outlined in this chapter already show on a high level what
a future modular platform could look like, there is still a lot of work needed to create a coherent and
useful concept for the ALPI — the Application-level Platform Independence.

The goals of independence, standardization and ease of use for the definition of the ALPI interface
pose new challenges that imply assumptions for a correct compromise with the complexity of a
modular platform. Based on the reported description, it was found that the common definition of the
14 interface is influenced by the following factors:

e Level of independence of ALPIl: The common high-level description of ALPI highly depends
on the choice of RTE. In case of a single RTE provider, the description of the 14 interface
coincides with that of the RTE itself; in case of RTE from different suppliers, a specific
adaptation interface for each RTE should be provided in addition.

e Level of transparency for safety: based on what is provided by the Safety Environment, 15
should provide complete transparency about consolidations required for up to SIL4 or in any
case a minimum set of runtime services. Complete transparency implies a clear definition of
the SIL of input/output data at configuration time.

FP2-WP26-D-DBN-003-06 Page 105 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

e Level of transparency for security: security communication is not taken in account by ALPI,
being managed end-to-end by the underlying layers. ALPI, during the configuration phase,
must allow the selection of appropriate security-oriented protocols to be implemented by
lower levels.

o Deployment, maintenance: 14 is primarily a runtime interface, so deployment and
maintenance is delegated to specific tools provided by the RTE at FS level. In this case, ALPI
requires a configuration data structure for the aggregation of the basic components. The
aggregation is managed at FS level.

Possible choices for further simplifications and standardizations: the descriptions of 14 and 15 are
based on the safety integrity level of services. It is possible either an incremental approach in which
a safety-related FA uses |4 by default and adds 15 for the part involving the SE, or it uses an 15 that
integrates a restricted 14, in congruence with the target SIL 1 up to 4.

The definition of the requirements in the appendix was made on the basis of an independent
approach, which however also took into account the results of the solutions proposed in chapters 6
and 8.

7.6.1 Open points

7.6.1.1 RTE Single/multi provider

ALPT’s scope is to propose a common high level API description. This can be facilitated through the
choice of a single RTE provider. In the case of different RTEs, ALPIs will have to include "adapters"
and the management of the associated complexities. The choice to impose any constraints on the
RTE provider, in order to simplify the implementation of ALPI, should be evaluated in consideration
of the trade-off between flexibility in the choice of multi supplier and the related additional complexity
associated with the introduction of "adapters" for RTEs harmonization.

7.6.1.2 Consistent safety

With reference to safety management, the modularity and independence of the ALPI SW from the
MPC are not sufficient and it is necessary to introduce an overall safety mechanism to ensure that
the safe system is consistent. That is, to ensure that a change of version of ALPI, both 14 and 15, is
congruent with the SE. This mechanism must be considered in the ALPI configuration data structure.

FP2-WP26-D-DBN-003-06 Page 106 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

8 MANAGEMENT, DIAGNOSTICS AND SECURITY RELATED
INTERFACES

This chapter deals with platform management, diagnostics and security related interfaces, either
internal to the platform, or external to the platform, the latter being referred to as “I1” (see
Chapters 3.7.1 and 5). The interfaces are important for integration and interoperability of modular
platforms into the railways’ computing landscape and operations. The interfaces discussed here are
platform-centric and do explicitly not cater to the needs of the functional applications executed on
such a modular platform.

8.1 OVERVIEW ON THE INTERFACES

An overview on the stated interfaces is provided in Figure 56 . The high-level components introduced
in this context are described in Table 7.

MPC Scope (Boundary of a CPI)

-
l

d

Functional System(s)

|

|

|

|

|

: «—{ MGMT-DIAG |—
I «—| FsuPDATE }—> 11-DIAG e
|

| —
|)

|

|

|

Shared
Platform
VCEs, ‘_[CEME-DIAG Management
VEs, Virtual
NHA | | Machine ‘_[ORCH
Mgmt
PCEs <
CEME
e |
o Components MPC specific COTS external
5
L%
Interfaces [Have the colour of the component specifying the interface]

Figure 56: Logical architecture around management, diagnostics and security related

interfaces.

Entity Description
CEME - The Compartment Execution and Management Environment comprises the
Compartment hardware and virtualisation environment along with related (proprietary)
E .

xecution and ¢ Virtual Machine Management functions, and
Management
Environment e Hardware and Virtualisation related Diagnostics Functions.

FP2-WP26-D-DBN-003-06 Page 107 of 171 25/07/2025

EQEDA TO Contract No. HE — 101102001 e‘

—urope's

Entity Description

As shown in Figure 49, the CEME is expected to be 100% Commercial-of-the-
shelf (COTS), except for the Native Hardware Access (NHA) function that may
potentially not be COTS and that is required by the Safety Environments to
support Functional Systems with a SIL level.

Functional System(s) | Functional System(s) are defined in chapters 3.7.2 and 5. In the context of the
interfaces covered in this chapter, it is important to note that the Functional
Systems(s) are expected to contain:

e FS Diagnostics Server: Entity running in a dedicated Compartment
and/or together with a Functional Application in an FS Compartment,
which provides diagnostics information to the Platform Management and
to Shared Services

e FS Update Client: Entity running in a dedicated Compartment or
together with a Functional Application in an FS Compartment, which
responds to and executes update requests from the Platform
Management or Shared Services

Shared Services Shared Services are standardized services related to IT security (e.g.,
authentication, certificate management), global time provisioning, diagnostics
and configuration management / update that are located outside the platform.

Platform This entity supervises the operation of the Functional Systems running on the

Management Virtual Computing Elements in one (or multiple) location(s), e.g. data centre(s). It
obtains diagnostics information from the FS Diagnostics Server within the
Functional Systems and from the Hardware and Virtualisation related
Diagnostics Functions within the CEME. It forwards the information, as
appropriate, to the Shared Services via 11-DIAG and reacts by triggering
appropriate actions, e.g., the creation of new Virtual Computing Elements inside
the Virtualisation Environment or restarting Physical Computing Elements if
needed.

Note: The Platform Management is not safety-relevant (but ensures the
fulfilment of RAM requirements during operation), as the Functional Systems
themselves (and the Safety Environments therein) always ensure a safe state
and safe output. It is assumed that the Platform Management provides a highly
standardized functionality in the way that it reacts to information arriving via
CEME-DIAG and/or MGMT-DIAG by triggering actions via ORCH and/or FS-
UPDATE in a standardized way, potentially involving FS-specific policies.

The Platform Management implements the MPC specific interfaces and
abovementioned functionality, potentially utilising as much as feasible COTS
solutions, e.g., OpenStack or other solutions.

Table 7: Entities of particular interest in the context of management, diagnostics and
security related interfaces.

The interfaces related to management, diagnostics and security are described in Table 8, along with
the mapping to the interface names used in D26.1 [18] and in the System Pillar Computing
Environments domain [14].

FP2-WP26-D-DBN-003-06 Page 108 of 171 25/07/2025

m Contract No. HE — 101102001 6‘

=urope's

Interface Description Mapping to terminology

InD 26.1 [18] In SP CE domain
[14]

CEME-DIAG Via this interface, diagnostics functions | PLAT_HEALTHMGMT | IF-DIAGNOSTICS
within the CEME provide diagnostics

:Eizr:li?;tnmaenn; information related to the Hardware and
Management Virtualization Environment to the
Environment Platform Management (such as the
related information that there is a HW failure, a

Diagnostics) | VCE failure, etc.).

The Platform Management reacts to this
e.g., by triggering the (re-)creation of
Virtual Computing Elements via ORCH
and/or updates of Functional System
Compartments via FS-UPDATE.

It is assumed that this interface is
specified by the chosen COTS CEME
including Virtual Machine Management
related functionality.

ORCH Via this interface, the Platform PLAT_UPDATE IF-

Management triggers the Virtual ORCHESTRATION
Machine Management within the CEME

to setup new Virtual Computing

Elements etc. This interface is also used

to setup FS Compartments to the extent

that they form the endpoint of the FS-

UPDATE interface.

It is assumed that this interface is
specified by the chosen COTS CEME
solution, including Virtual Machine
Management related functionality.

MGMT-DIAG Via this interface, the FS Diagnostics | PLAT_HEALTHMGMT | IF-DIAGNOSTICS
Server(s) in the Functional System(s)
provide(s) diagnostics information
strictly needed for the management of
the FS Compartments and V(C)Es (such
as information on failures of FS
Compartments, etc.) to the Platform
Management. The Platform Manage-
ment reacts to this by triggering the (re-
)creation of Virtual Computing Elements
via ORCH and/or updates of Functional
Systems (Compartments) via FS-
UPDATE.

FP2-WP26-D-DBN-003-06 Page 109 of 171 25/07/2025

m Contract No. HE — 101102001 6‘

=urope's

Interface Description Mapping to terminology

InD 26.1 [18] In SP CE domain
[14]

FS-UPDATE Via this interface, the Platform PLAT_UPDATE IF-
Management supervises updates of the ORCHESTRATION
Functional Systems (Compartments).

11-DIAG Via this interface, the FS Diagnostics PLAT_LOGGING IF-LOGGING
Server in the Functional System(s)
provides additional diagnostics
information (beyond that strictly needed
for the management of the FS
Compartments and V(C)Es) towards
Shared Services.

Also, the interface can be used by the
Platform Management to provide
diagnostics information to Shared
Services.

Note: It is assumed that this interface is
specified in the TCCS domain.

11-UPDATE Via this interface, Shared Services PLAT _UPDATE IF-
trigger the update of Functional Systems ORCHESTRATION
(Compartments) toward the Platform
Management and/or directly to the FS
Update Client(s) within the Functional
Systems (see Section 8.2 for further
discussion on this).

Note: It is assumed that this interface is
specified in the TCCS domain.

11-SEC Via this interface, the Virtualization = PLAT_SECURITY IF-IT-SEC
Environment, the Platform = PLAT_SYNC
Management, and the Functional
System(s) access security and
synchronization services provided by
the Shared Services (see chapter 3.7.4).

Note: It is assumed that this interface is
specified in the TCCS domain.

Table 8: Interfaces related to management, diagnostics and security internal or external to
the platform.

As can be seen from Table 8, some changes in the granularity of the interfaces have been applied
compared to the former definitions in D 26.1 and in the System Pillar Computing Environments
domain:

FP2-WP26-D-DBN-003-06 Page 110 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

e The former “PLAT_UPDATE” / “IF_ORCHESTRATION” interface is now split into two
interfaces “ORCH” and “FS-UPDATE”, as they terminate at different points and refer to
different layers in the technology stack:

o The ORCH interface is between the Platform Management and the Virtual Machine
Management within the CEME. It is used to manage the setup of Virtualization
Environments, Virtual Computing Elements, etc.

o The FS-UPDATE interface is between the Platform Management and the FS Update
Client(s) in the Functional System(s). It is used to supervise Functional System
(Compartment) updates in alignment with configurations of the Virtual Computing
Elements.

e The former “PLAT_HEALTHMGMT” / “IF_DIAGNOSTICS?” interface is similarly split into two
interfaces CEME-DIAG and MGMT-DIAG, also because they terminate at different entities
and refer to different layers in the technology stack:

o The CEME-DIAG interface is between the CEME and the Platform Management,
conveying diagnostics information related to hardware, the Virtualization Environment,
Virtual Computing Elements etc.

o The MGMT-DIAG interface is between the FS Diagnostics Server and the Platform
Management, conveying diagnostics information obtained from the application domain.

8.2 GENERAL ASSUMPTIONS ON THE INTERFACES

It is important to note that the aforementioned interfaces are all assumed to be not safety relevant.
Their failure may have an impact on the availability of a Modular Computing Platform (e.g., because
the Platform Management is not able to correctly react to a hardware or software failure), but
mechanisms in the Functional Systems (or in the Safety Layer therein) always ensure that safety is
fulfilled.

Regarding updates of Functional Systems and the usage of the 1-UPDATE and FS-UPDATE
interfaces it is also important to note that at this point two proposals shall be provided as potential
options for further study:

a) Shared Services could directly interface to the FS Update Clients in the FS
Compartments via I11-UPDATE to trigger updates of Functional Systems (Compartments).
This requires that Shared Services are aware that Functional Systems run in the form of
redundant replicas in multiple FS Compartments and need potentially awareness of
constraints or procedures that have to be considered for the update of these (for instance,
FS Compartments may have to be stopped, updated and started in a certain order or with
certain timing constraints, etc.). In this case, the Platform Management needs to be informed
about any FS Compartment updates triggered by the Shared Services, so that it can
supervise needed activities appropriately (and for instance correctly trigger the re-creation of
a Virtual Computing Element) when FS Compartment failures are reported through the
MGMT-DIAG interface.

b) Shared Services interface to the Platform Management and direct any update requests
related to Functional Systems to the Platform Management. In this case, the Shared Services
need not be aware of the deployment of replicas and FS Compartments, but rather see a
Functional System as one atomic entitity that can be updated as a whole based on provided

FP2-WP26-D-DBN-003-06 Page 111 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

information. The Platform Management, being aware of the notion of FS Compartments and
the related FS Deployment Rules, can then translate update requests from Shared Services
into a sequence of requests via FS_UPDATE to the FS Update Clients in the FS
Compartments, also taking into account FS Deployment Rule specific timing constraints, etc.

Which of such options is to be used (or whether both would possibly be used concurrently or in
combination) needs further investigation. It is assumed that option a) above introduced higher
demands on the 11-UPDATE interface specified in the TCCS domain, as the Shared Services need
to apply configuration and software updates of Functional Systems, e.g., running in data centres on
a different granularity and with different constraints than when performing configuration updates of,
e.g., field elements as currently foreseen. Option b) may require less complexity on the 11-UPDATE
interface specified in the TCCS domain, as the Platform Management, where the interface would
terminate on the platform side, would supervise the implementation, managing their complexity and
constraints.

8.3 REQUIREMENTS ON THE INTERFACES

The requirements for the interfaces mentioned can be found in Appendix D, Management,
Diagnostics and Security related Interface Requirements.

The requirements for interfaces being part of 11 (e.g., 11-DIAG, [1-UPDATE, I11-SEC) are not in the
scope of work package 26. These interfaces are specified in the System Pillar TCCS domain. It is
assumed that the modular platform concept and the entities described in this chapter would reuse
the 11-DIAG and I1-SEC as they are considered in the TCCS domain so far, without posing MPC-
specific requirements. However, it is still to be checked, ideally in the dialogue between R2DATO
and the TCCS domain in the System Pillar whether this is indeed the case.

For the 11-UPDATE, as stated in Section 8.2, further investigations are required w.r.t. how this
interface is used in concurrence with FS-UPDATE. From this investigation, further requirements on
[1-UPDATE may be derived that would have to be considered in the TCCS domain.

8.4 CONCLUSIONS AND NEXT STEPS

This chapter has delved into platform management, diagnostics and security related interfaces. A
distinction has been drawn between interfaces within the CP1 — Compatible Platform Implementation
(ORCH, CEME-DIAG, FS-UPDATE, MGMT-DIAG) and those toward Shared Services external to
the CPI (11-DIAG, I11-SEC, 11-UPDATE).

For the interfaces within the CPI, requirements have been derived. The common understanding is
that

e The interfaces from the Platform Management to the Functional Systems - MGMT-DIAG and
FS-UPDATE - are specific to the MPC and can be specified exactly according to the identified
MPC needs. Here, the next steps are to further develop the concept and subsequently identify
suitable existing protocols for these interfaces and specify the interfaces in detail;

e The interfaces from the Platform Management to the Compartment Execution and
Management Environment (CEME) — ORCH and CEME-DIAG - are expected to be based
on existing interfaces provided by existing COTS implementations of the CEME. Here, there
is hence no degree of freedom to specify these interfaces, but it rather has to be checked
whether existing COTS solutions fulfill the requirements on these interfaces identified in this

FP2-WP26-D-DBN-003-06 Page 112 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

deliverable. At the time of writing of this deliverable, there is confidence that there are multiple
COTS solutions on the market that can meet the requirements, but a detailed (gap) analysis
has to be performed.

For the interfaces from the CPI to the Shared Services — I11-UPDATE, I11-DIAG and I1-SEC - it has
to be discussed with the ERJU System Pillar TCCS domain, as noted in Sections 8.2 and 8.3, how
these interfaces are exactly to be used in the MPC context, and whether additional requirements
may be posed on these from the MPC context beyond the requirements already considered in the

TCCS domain.

FP2-WP26-D-DBN-003-06 Page 113 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

9 CONCLUSIONS

Modular computing platforms are a proven concept in many areas, and this success already
motivated many endeavours to enable their usage in the railway domain [18]. Work package 26,
within the environment of ERJU Innovation Pillar Focus Project 2 R2DATO, applied the state-of-the-
art to the input and the guidance from the ERJU System Pillar, most importantly from the Computing
Environment domain, and elaborated on important, railway specific aspects.

This activity created the “Modular Platform Concept” (MPC), which is presented in detail in this
deliverable. The analysis and concept work are expected to further contribute to ERJU SP progress,
supporting the domains in defining a suitable environment for modular platforms to be commissioned
in the future.

The MPC is presented with a basic analysis (see chapter 3), as high-level requirements (see
chapter 4 respectively Appendix A), and the architecture concept (chapter 5). The MPC is built on
three internal ideas (HLPI, ALPI, and respective interfaces; see chapters 6, 7, and 8) and provides
external interfaces for operational integration as specified by ERJU System Pillar.

The overall outcome has two facets: Modular platforms as the MPC are feasible in the railway
context. However, the complexity of a fully defined MPC for safety functions set limits to the depth
of specification that can be presented here. As well, it's an ongoing discussion what actual level of
definition respectively harmonization of a platform keeps the right balance between interchange-
ability and potential for future innovation and differentiation.

As such, the specification presented is not final and implementable in a way that would fulfil all
variants of interchangeability, nor would a final & fixed specification have been advantageous at the
time this deliverable was to be finished. This is due to several dependencies and implications,
content- and timewise:

¢ A final specification is expected to describe platform implementations that are certifieable
and allow for modularity in a way that enables the stated goals. This will be analysed in work
package 26’s next task and its results will further guide the MPC specification.

e The input received from the System Pillar was limited to information received via the FP2
Cluster System engineer respectively via direct contacts in the appropriate ERJU SP
domains. This input was not stable and changed regularly. When this deliverable was due,
there were no published inputs from the relevant SP domains.

e The input from the SP CE domain as shown in chapter 3.7.1 was in some aspects
unexpected and did not align with the goals of all of work package 26’s members. The
approach planned in work package 26’s first deliverable [18] was not fully compatible with
the input received from the CE domain [14], especially the introduction and prioritization of 12
and 13, as well as the different design of |1 were not expected. On one hand, the increasing
scope helped the definition of ALPI and HLPI, as introduced in work package 26’s second
deliverable and explained in detail in this current deliverable. On the other hand, the
complexity similarly rose. Continous alignment with the SP CE domain helped to steer work
package 26 into the right direction.

e The SP CE domain conclusion and final output on the computing environment is likely several
years out.

FP2-WP26-D-DBN-003-06 Page 114 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

¢ While it was not expected to be available in the timeframe, it’s still relevant to note that there
is no input yet, e.g. in the form of requirements, coming from any application in the R2DATO
context that would target the MPC.

¢ In the environment described in the bullet points above, it's not feasible to decide on a clear
strategy for standardization approaches in the MPC. The goal of interchangeability can be
reached on many different granularities and levels. Not limiting future innovation while
creating beneficial harmonizations in the architecture and/or interface realms, however, is a
hard requirement for future adoption of the MPC. Existing developments in the sector have
to be taken into account, and a good and informed compromise needs to be found. One option
is to gain the necessary knowledge and drive the adoption in demonstrator projects, such as
the “Onboard Platform Demonstrator” work package 36 in R2DATO, the demonstrator cluster
of R2DATO in general, and future phases of R2DATO respectively ERJU. Another option
could be to collect insights from incumbent platform vendors and design the MPC interfaces
accordingly. This has last option naturally has been applied to this deliverable already, as the
authors of the relevant chapters have insights into their companies experiences in this field.

Despite all these factors and caveats, this deliverable shows a concrete and complete picture of the
Modular Platform Concept, highlighting many important considerations, requirements, approaches
for safety and security, and enables the sourcing of relevant core technologies as commercial-off-
the-shelf (COTS) products.

1) Complete picture of the MPC

Chapter 3 “Modular Platforms Concept (MPC)” introduced and discussed purpose, scope,
stakeholders, goals, non-goals, assumptions, known issues and limitation, the alignment with
the ERJU System Pillar, PRAMSS approaches, user stories, operational context and
scenarios, intended usage scenarios and platform environment examples. In chapter 4
“Modular Platforms Requirements”, the methodology and sources for an updated and
comprehensive set of high-level modular platform requirements were presented, leading to
the actual list of requirements in Appendix A “MPC Requirements”. Subsequently, in
chapter 5 “Modular Platforms Architecture”, an architecture approach was developed, based
on ERJU SP input and previous work package 26 work. The modularization architecture —
how the modular approach is integrated into the architecture — and the service architecture
— how different internal and external interfaces are provided to functions and the outside —
are explained and are the basis for the detailed discussions later in the deliverable.

2) Requirements
For each of the MPC’s central ideas, requirements were derived and organized in the

appendices: Appendix B “HLPI Requirements” lists the key learnings and rationales from
chapter 6, detailing the conditions for the broader virtualisation approach within the MPC. In
Appendix C “ ALPI Requirements”, the application level needs for defining interfaces 14 and
I5 are listed, based on the work presented in chapter 7. The remaining interfaces in scope of
the MPC are discussed in chapter 8 and the resulting requirements can be found in Appendix
D “Management, Diagnostics and Security related Interface Requirements”. The
requirements collected for three topics build a solid high-level starting point for further
consolidation and improvement, especially filling in gaps and checking and augmenting the
content by an implementation approach.

3) Approaches for Security
Security approaches are driven by the ERJU SP work as a framework, and also by concepts

FP2-WP26-D-DBN-003-06 Page 115 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

on how to implement appropriate measures in the MPC, e.g. in chapter 6.8. Especially
enabling decoupled security driven updates is an inherent strength of the MPC.

4) Approaches for Safety
For the MPC goal to minimize the areas with functional safety integrity levels above Basic
Integrity while still providing an up to SIL4 capable environment two approaches have been
compared: HLPI and ALPI.
The HLPI safety discussion motivates certain measures that have to be implemented to
support the required safety capabilities in a virtualized environment, see chapter 6.7. The key
challenge is the decoupling or harmonization of the SRACs of the Safety Environment in the
AEE from the actual implementation details of the CEE respectively CEME. Proposals for
this challenge, like the motivation of the so-called “Native Hardware Access” (NHA), have
been made and show potential ways forward.
For ALPI, the 15 interface presents an opportunity for decoupling Functional Applications with
SIL greater 0 from the underlying layers. The discussion can be found in chapter 7.

5) Sourcing of COTS components

The opportunities to source platform-defining components as COTS without the need to
develop new technologies or products is a clear advantage of the MPC. As highlighted in
chapters 5.1.1 and 6, COTS hardware for the Physical Computing Environment can be used
in the MPC, as well as COTS virtualisation solutions can be used for the CEME. The
adaptation of special properties or interfaces of the COTS components is achieved by
introducing the Platform Management (PM) component within MPC. The PM enables the
adaptation of ERJU-driven external interfaces (11) and Functional System specific internal
interfaces (see chapter 8) to the CEME. The CEME interfaces are depending on the COTS
solutions integrated into an actual Compatible Platform Implementation (CPI). With the PM,
all variants of CPI behave the same way externally and provide the same interfaces (I1).

Detailed technical analyses and further information including respective conclusions can be found in
the appropriate chapters. A comprehensive collection of open points is available in Appendix E.

In summary, this deliverable lays the foundation for the Modular Platform Concept, MPC, prominently
enabling capabilites such as decoupled lifecycles of software and hardware (MPC-P01),
consolidation of more software on less hardware (MPC-P06), and extensibility (MPC-P04) in a
railway safety environment using proven, commercial-off-the-shelf hardware and software
technologies. The COTS components are integrated using an individual Platform Management
component, leaving room for innovation and differentiation of future Compatible Platform
Implementations.

The deliverable acts as an input to current and future ERJU System Pillar activities, and to work
package 26 task 3, the study on modular certification. The deliverable concludes work package 26
task 2.

FP2-WP26-D-DBN-003-06 Page 116 of 171 25/07/2025

@2 Contract No. HE — 101102001 e‘

—urope's

REFERENCES

[11 OCORA website
https://github.com/OCORA-Public/Publications

[2] EULYNX website
https://eulynx.eu/

[3] SIL4@Cloud Report
https://digitale-schiene-deutschland.de/Downloads/Report%20-%20SI1L4%20Cloud.pdf

[4] SIL4 Data Center Report
https://digitale-schiene-deutschland.de/Downloads/Research%20Report%20-
%20SI1L4%20Data%20Center.pdf

[5] Computing Platform — Whitepaper:
https://github.com/OCORA-
Public/Publications/blob/master/00 OCORA%20Latest%20Publications/Latest%20Release/
OCORA-TWS03-010 Computing-Platform-Whitepaper.pdf

[6] Computing Platform — Requirements:
https://github.com/OCORA-
Public/Publications/blob/master/00 OCORA%20Latest%20Publications/Latest%20Release/
OCORA-TWS03-020 Computing-Platform-Requirements.pdf

[71 Computing Platform — Specification of the Pl API between Application and Platform:
https://github.com/OCORA-
Public/Publications/blob/master/00 OCORA%20Latest%20Publications/Latest%20Release/
OCORA-TWSO03-
030 _SCP_Specification of the Pl APl between Application and Platform.pdf

[8] OCORA Discussion paper about Configuration and Updates
https://github.com/OCORA-
Public/Publications/blob/master/08 OCORA%20Release%20R3/OCORA-TWS07-
060 _Configuration%20Management-Concept.pdf

[9] OCORA-TWS08-010 MDCM Introduction
https://github.com/OCORA-Public/Publications/blob/master/08 OCORA Release
R3/OCORA-TWS08-010 MDCM-Introduction.pdf

[10] OCORA-TWS08-030 MDCM SRS
https://github.com/OCORA-Public/Publications/blob/master/08 OCORA Release
R3/OCORA-TWS08-030 MDCM-SRS.pdf

[11] OCORA-TWS01-035 CCS On-Board Architecture
https://github.com/OCORA-
Public/Publications/blob/master/00 OCORA%20Latest%20Publications/Latest%20Release/
OCORA-TWS01-035 CCS-On-Board-(CCS-OB)-Architecture.pdf

[12] OCORA-BWS02-030 Technical Slide Deck
https://github.com/OCORA-
Public/Publications/blob/master/08 OCORA%20Release%20R3/OCORA-BWS02-
030 Technical-Slide-Deck.pdf

FP2-WP26-D-DBN-003-06 Page 117 of 171 25/07/2025

https://rail-research.europa.eu/system-pillar-key-documents/
https://eeigertms.sharepoint.com/:b:/r/sites/SPOpenShare/Gedeelde%20documenten/General/23-09-29%20Steering%20Group%206/SPG-STG-D-SPG-101-01_-_20230920_Task_2_Computing_Environment_-_Interfaces_to_be_standardised.pdf
https://projects.shift2rail.org/s2r_ip2_n.aspx
https://github.com/OCORA-Public/Publications/blob/master/08_OCORA%20Release%20R3/OCORA-TWS08-010_MDCM-Introduction.pdf
https://github.com/OCORA-Public/Publications/blob/master/08_OCORA%20Release%20R3/OCORA-TWS08-010_MDCM-Introduction.pdf
https://eulynx.eu/
https://eulynx.eu/
https://eulynx.eu/
https://theupdateframework.io/
https://theupdateframework.io/
https://theupdateframework.io/
https://projects.shift2rail.org/s2r_ip2_n.aspx
https://projects.shift2rail.org/s2r_ip2_n.aspx
https://projects.shift2rail.org/s2r_ip2_n.aspx
https://projects.shift2rail.org/s2r_ip2_n.aspx
https://digitale-schiene-deutschland.de/Downloads/Report%20-%20SIL4%20Cloud.pdf
https://digitale-schiene-deutschland.de/Downloads/Report%20-%20SIL4%20Cloud.pdf
https://digitale-schiene-deutschland.de/Downloads/Report%20-%20SIL4%20Cloud.pdf
https://github.com/OCORA-Public/Publications
https://github.com/OCORA-Public/Publications
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-010_Computing-Platform-Whitepaper.pdf
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-010_Computing-Platform-Whitepaper.pdf
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-020_Computing-Platform-Requirements.pdf
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-020_Computing-Platform-Requirements.pdf
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-020_Computing-Platform-Requirements.pdf
https://projects.rail-research.europa.eu/eurail-fp2/deliverables/
https://projects.rail-research.europa.eu/eurail-fp2/deliverables/
https://projects.rail-research.europa.eu/eurail-fp2/deliverables/

@2 Contract No. HE — 101102001 e‘

—urope's

[13] ERJU System Pillar — Computation Environment Domain
https://rail-research.europa.eu/system pillar/

[14] ERJU System Pillar, Computing Environment — Deliverable “Recommendation on interfaces
to be standardised”
Document list: hitps://rail-research.europa.eu/system-pillar-key-documents/
Document access:
https://eeigertms.sharepoint.com/:b:/r/sites/SPOpenShare/Gedeelde %20documenten/Gener
al/23-09-29%20Steering%20Group%206/SPG-STG-D-SPG-101-01_-
20230920 Task 2 Computing Environment -
Interfaces to be standardised.pdf?csf=1&web=1&e=VBeC7n

[15] ERJU System Pillar, Computing Environment — Deliverable “System Concept including
Operational Analysis” (the old title was used in this deliverable: “Operational Analysis
Specification”)

Document list: https://rail-research.europa.eu/system-pillar-key-documents/
Document access: not yet available

[16] ERJU System Pillar — Common Business Objectives
https://rail-research.europa.eu/wp-content/uploads/2022/10/SP-Common-Business-

Objectives.pdf

[17] ERJU System Pillar, PRAMS — Deliverable “Evolution Management of safety related
systems”
Document list: https://rail-research.europa.eu/system-pillar-key-documents/
Document access: not yet available

[18] ERJU Innovation Pillar FP2 R2DATO, Work Package 26, Deliverable D26.1
“High level Consolidation”
https://projects.rail-research.europa.eu/eurail-fp2/deliverables/

[19] ERJU Innovation Pillar FP2 R2DATO, Work Package 26, Deliverable D26.2
“Intermediate specification of the Modular Platform”
https://projects.rail-research.europa.eu/eurail-fp2/deliverables/

[20] ERJU Innovation Pillar FP2 R2DATO, Work Package 26, Deliverable D26.4
“Summary of findings and recommendations from study on modular certification and
homologation”
https://projects.rail-research.europa.eu/eurail-fp2/deliverables/

Document access: not yet available

[21] X2RAIL-3 Deliverable 8.2
https://projects.shift2rail.org/download.aspx?id=0a20cac9-e20f-4cdf-bc63-e0cb28950cfd

[22] EuroSpec European Specifications for railway vehicles
https://eurospec.eu

[23] EuroSpec Software Updates specification V1.0
https://eurospec.eu/download/software-updates-v1-0/

[24] EuroSpec Maintenance Software specification V1.0
https://eurospec.eu/maintenance-software/

FP2-WP26-D-DBN-003-06 Page 118 of 171 25/07/2025

https://github.com/OCORA-Public/Publications/blob/master/08_OCORA%20Release%20R3/OCORA-TWS08-030_MDCM-SRS.pdf
https://projects.shift2rail.org/download.aspx
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-030_SCP_Specification_of_the_PI_API_between_Application_and_Platform.pdf?csf=1&web=1&e=VBeC7n
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-030_SCP_Specification_of_the_PI_API_between_Application_and_Platform.pdf?csf=1&web=1&e=VBeC7n
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-030_SCP_Specification_of_the_PI_API_between_Application_and_Platform.pdf?csf=1&web=1&e=VBeC7n
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS03-030_SCP_Specification_of_the_PI_API_between_Application_and_Platform.pdf?csf=1&web=1&e=VBeC7n
https://projects.shift2rail.org/download.aspx
https://github.com/OCORA-Public/Publications/blob/master/08_OCORA%20Release%20R3/OCORA-TWS07-060_Configuration%20Management-Concept.pdf
https://github.com/OCORA-Public/Publications/blob/master/08_OCORA%20Release%20R3/OCORA-TWS07-060_Configuration%20Management-Concept.pdf
https://projects.shift2rail.org/download.aspx
https://digitale-schiene-deutschland.de/Downloads/Research%20Report%20-%20SIL4%20Data%20Center.pdf
https://digitale-schiene-deutschland.de/Downloads/Research%20Report%20-%20SIL4%20Data%20Center.pdf
https://digitale-schiene-deutschland.de/Downloads/Research%20Report%20-%20SIL4%20Data%20Center.pdf
https://github.com/OCORA-Public/Publications/blob/master/00_OCORA%20Latest%20Publications/Latest%20Release/OCORA-TWS01-035_CCS-On-Board-(CCS-OB)-Architecture.pdf?id=0a20cac9-e20f-4cdf-bc63-e0cb28950cfd
https://eurospec.eu/
https://eurospec.eu/download/software-updates-v1-0/

@2 Contract No. HE — 101102001 e‘

—urope's

Appendix

FP2-WP26-D-DBN-003-06 Page 119 of 171 25/07/2025

RZDA TO Contract No. HE — 101102001 e‘

—urope’s

APPENDIX A MPC REQUIREMENTS

This chapter provides selected and adapted requirements from several sources as listed below, and potentially additional requirements derived here
by the work package. The selection process focused on capturing a subset of important characteristics that differentiate the MPC from a traditional
railway computing platform. Not all sources previously mentioned (in chapter 4) have had requirements that were in suitable format or specificity to
allow their usage in the following list.

Column Meaning

Source O: OCORA Modular Platform Requirements [6]
S: SP CE Domain OAS [15] (released to Mirror Group on 2024-05-07)

+: new

#: (heavily) modified or rewritten

Scope F: full (all target environments)
OB: On-board required, trackside optional
TS: Trackside required, on-board optional
O: optional for all environments

X: notin scope for work package 26
Table 9: Sources, Scope and Legend for the requirements table

The following notes capture relevant aspects of the methods applied when selecting and modifying the requirements.

Note 1: Most requirements in the following table have been modified where necessary to reflect the correct usage of the glossary terms from
chapter 3.7.2 — this is indicated by the usage of “#” next to the source identifier. Also, the system under consideration was changed to the
MPC (Modular Platform Concept) where needed. Some requirements were fully rewritten, as indicated by a “+” in the source field.

Note 2: Some requirements are only relevant when some form of application-level platform independence approach is chosen (on 14 respective 15
level as introduced in chapter 3.7.1). These requirements are prefixed with “Where application-level platform independence is used, ...” to
indicate the relevant configuration.

FP2-WP26-D-DBN-003-06 Page 120 of 171 25/07/2025

' @EDA TO Contract No. HE — 101102001 5‘

=urope's

Note 3: The “Rationale” explains the reasoning behind the requirement.

Note 4: The “Satisfies” relation tries to connect the requirements to on ore more items of the MPC’s purpose, scope, goals, assumptions, and
limitations; at least where feasible and helpful (see chapter 3).

ID Source Requirement Scope
R0OO1 O# The MPC shall execute Functional Applications with SIL ranging from Bl up to SIL4. F
Z;SCP' Rationale: The MPC is a universal platform for all needs. However, actual implementations can limit the supported SIL
where necessary, e.qg. for trackside Bl systems.
Satisfies: MPC-P03
R002 O# Where multiple Functional Applications are present, the MPC shall execute Functional Applications independent of their F
MSCP- individual SIL.
20 Rationale: The SIL can be mixed within Functional Systems and across multiple Functional Systems and its Functional
Applications. The MPC implementations have to support arbitrary mixed SIL within their limitations of maximum
SIL.
R003 O# The MPC shall conform to the interface specification of the System Pillar Computing environment domain. F
';’;SCP' Rationale: Interfaces I1 to 15 are specified by the SP CE domain. The OCORA source requirements only referred to 14
and 15.
Satisfies: MPC-P01, MPC-P02, MPC-P03, MPC-P05, MPC-A02
R004 O# Where application-level platform independence is used, the MPC shall transparently encapsulate the safety and fault F
MSCP- tolerance mechanism.
23

Rationale: All safety-related functions not inherent in the application logic shall be implemented as part of the platform. As
platform vendors may use their specific approaches to handling safety and fault tolerance, it must be fully
encapsulated in the platform. Applications must not include any platform specific code related to safety or fault
tolerance.

Satisfies: MPC-P03

FP2-WP26-D-DBN-003-06 Page 121 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Requirement Scope
R0O05 (0] The MPC shall enforce a clear separation between the platform hardware and the runtime environment. F
hsigiE Rationale: A clear separation between hard- and software simplifies platform life-cycle management. Typically, the
18 L) .
hardware has a much shorter lifetime than the software running on top of it.
Satisfies: MPC-PO1
R006 0] The MPC vendor shall be responsible to ensure (by provision of tooling, documentation, generic product certification, etc.) F
MSCP- that a solution using the platform is certifiable according to CENELEC without the explicit involvement of the Computing
29 Platform vendor.
Rationale: A full decoupling of the life-cycles of the Computing Platform and the Functional Applications requires that a
deployment of Platform and Applications can be homologated without the explicit involvement of the
Computing Platform vendor.
Satisfies: MPC-P07, MPC-L02
R0O07 O# The Application vendor shall be responsible to ensure, by providing all required artefacts, that a Functional System canbe | F
MSCP- integrated on a MPC and homologated without the explicit involvement of the Application vendor.
EY Rationale: A full decoupling of the life-cycles of the MPC and the Functional Systems requires that a deployment of
Platform and Applications resp. Systems can be homologated without the explicit involvement of the
application(s) resp. System(s) vendor(s).
Satisfies: MPC-P07, MPC-L02
R008 O# Where application-level platform independence is used, the MPC shall define a unified set of safety related application F
MSCP- conditions (SRACSs) (at least to the extent that they relate directly to the Functional System) which all safety critical
28 Functional Systems must comply with in order to be certifiable according to CENELEC safety standards.

Rationale: In order to be able to port Functional Systems from one Platform implementation to another, it is key that all
Platform implementations delegate the exact same set of safety related application conditions to the Functional
Systems. Otherwise, Functional Systems would have to be modified to comply with different conditions on
different platform implementations.

Satisfies: MPC-P07, R006, RO07

FP2-WP26-D-DBN-003-06 Page 122 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Requirement Scope
R009 O# The MPC shall meet the relevant security system requirements as defined by the System Pillar Cyber Security domain. F
HisiEFs Rationale: Using a standards-based approach, ensures that adequate controls, processes and procedures are in place to
30 .) e) o
ensure the protection of the platform confidentiality, integrity and availability.
Remark: The standards situation is being cleared up and the relevant guidelines are expected from the System Pillar.
For the HLPI approach, additional investigations can become necessary. IEC 62443:2013 SL3 can be
assumed to be the baseline.
R0O10 0] The MPC shall ensure the authentication and authorisation of Functional Systems. F
';/IOSQCP_ Rationale: The Platform has to ensure that only authenticated Functional Systems and their components can use the
platform. Further Functional Systems and their components need to be able to trust that the entities they are
receiving messages from or transmitting messages to are the entities they claim to be.
RO11 (0] The MPC shall ensure independence (e.g., in CPU and memory usage) between Functional System components to fulfil F
MSCP- the CENELEC norm EN 50129:2018 or later.
ee Rationale: This is required for CENELEC compliance EN 50129:2018 or later.
RO12 O# The MPC shall offer a management interface to set a Functional System to be active or inactive where inactive means that F
MSCP- it is not executed and can be moved/replaced/updated.
38 Rationale: The operations accessible from the outside of a platform are on the Functional System level.
R0O13 O# The MPC shall provide the Functional System the ability to report that it needed to deactivate itself. F
:I\))/I3SCP_ Rationale: A Functional System might see the need to deactivate itself due to safety goals not being met. The MPC needs
to be aware of this change.
RO14 0] The MPC shall provide a management interface on which information is provided when a Functional System changes state. | F
gA1SCP- Rationale: If a Functional System deactivates itself this likely requires some external action.

FP2-WP26-D-DBN-003-06 Page 123 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 5‘

=urope's
ID Source Requirement Scope
RO15 (0] The MPC shall be able to dynamically map relevant Functional System components during operation to other Physical (0]
MSCP- Computing Elements in response to hardware failures.
S Rationale: This is intended to mitigate hardware failures.
R0O16 O# The MPC shall provide a management interface that allows activation and deactivation of Physical Computing Elements. TS
3488?; Rationale: The operators shall be able to add and remove physical computing element, e.g., hardware.
RO17 (0] For a Functional System it shall be transparent on which Physical Computing Elements its components are deployed to. F
&SCP_ Rationale: The functionality within the Functional Systems does not need to know where it is deployed. SRACs have to be
satisfied, of course.
R0O18 0] The MCP shall be able to run multiple Functional Systems concurrently (at the same time). F
2/|1SCP- Rationale: Hardware with a multicore processor architecture is commonly available today. It allows running Functional
System components side-by-side sharing resources.
Satisfies: MPC-P06
RO19 Oo# Where application-level platform independence is used, the MPC shall be able to assign deterministic execution behaviour | F
MSCP- to Functional System components in regular scheduling intervals, based on configuration.
% Rationale: Determinism is paramount in a safety critical environment. Therefore, each relevant Functional System
component must have a defined execution period (scheduling: time interval).
R020 O# Where application-level platform independence is used, the MPC shall be able to assign deterministic execution behaviour | F
MSCP- to relevant Functional System components triggered by an one-shot-timer event.
97

Rationale: Besides a regular scheduling interval, additional execution of a Functional System component might be
needed, therefore one-shot-timer triggered execution shall be provided by the platform.

FP2-WP26-D-DBN-003-06 Page 124 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 5‘

=urope's
ID Source Requirement Scope
R021 O# Where application-level platform independence is used, the MPC shall be able to schedule Functional System components @ F
MSCP- for execution triggered by an event such as the receiving of a message by a Functional System component.
<L Rationale: Enable reaction to explicit events prior to the next regular scheduled start.
R022 O# Where application-level platform independence is used, the MPC shall be able to execute Functional System components F
MSCP- for a guaranteed execution budget, which shall be defined in the configuration.
40

Rationale: Determinism is paramount in a safety critical environment. Therefore, relevant Functional System components
must have a guaranteed execution e.g., to be scheduled for configured number of time ticks.

Remarks: Configuration for all different scheduling paradigms need to be provided, e.g., execution time guarantees might
differ between interval and event triggered scheduling and as well between on-board and trackside applications

needs.

R023 O The MPC shall be able to provide strict deadlines and maximum tolerable jitter for deterministic scheduling of Functional (0]
MSCP- System components.
= Rationale: Real-time computing is key for designing and/or developing predictable, safe CCS functional applications.

R024 0] Where application-level platform independence is used, the MPC shall detect and handle errors according to EN F
MSCP- 50129:2018 (with both the definition of “error’ and the handling of these according to EN 50129:2018).
108 Rationale: This is required to fulfil the norm EN 50129:2018.

R025 (0] Where application-level platform independence is used, the MPC shall monitor whether a Functional System componentis | F
MSCP- able to conclude processing within a defined time period.
118

Rationale: It is important that Functional System components can conclude on processing, e.g., incoming messages
within a certain CPU resource. The platform has to monitor this to be able to potentially react.

FP2-WP26-D-DBN-003-06 Page 125 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 5‘

=urope's
ID Source Requirement Scope
R026 0] Where application-level platform independence is used, the MPC shall inform the Functional System component if one or F
MSCP- multiple of its components have (once or multiple times) not been able to conclude processing in the allocated processing

119 time and take action if configured so.

Rationale: Only the Platform knows about the exceeding and informs the Functional Actor that it might have taken
appropriate actions.

R027 (0] Where application-level platform independence is used, when there are multiple replicas of the same Functional Actor, the F
MSCP- MPC shall ensure that individual replicas process the same messages.
1013 Rationale: This is required, as otherwise it could not be guaranteed that the Replicas yield the exact same output.

R028 O# Where application-level platform independence is used, MPC shall provide standardised mechanisms for communication F
MSCP- between Functional Systems components.
44

Rationale: Functional Systems and their respective Functional Actors shall be able to exchange data with each other
using a standardised message paradigm.

R029 O X
MSCP-
4 Rationale: In case there are local I/Os directly connected to the hardware of the MPC, these must be made accessible to
the relevant Functional System components.
Remark: Some on-board Computing Platforms need to supply up to SIL4 outputs (e.g., Emergency Brake) and it is the
responsibility of the MPC implementation to realise such functional safe I/Os.
R030 0] The MPC shall provide the ability to Functional Systems to communicate via communication networks. F
g/I1SCP— Rationale: Functional Systems deployed on different Physical Computing Elements need to communicate with each other.

Remark: It is assumed that the Computing Platform needs to provide network access via commonly used network
protocols as e.g., TCP/IP.

FP2-WP26-D-DBN-003-06 Page 126 of 171 25/07/2025

RZDA TO Contract No. HE — 101102001 e‘

—urope’s
ID Source Requirement Scope
R031 (0] The MPC shall allow time synchronisation with an external time server via standard protocols. F
?588(?:;3 Rationale: Time synchronisation aims to coordinate otherwise independent clocks. Even when initially set accurately, real
clocks will differ after some amount of time due to clock drift, caused by clocks counting time at slightly different
rates. The usage of standardised protocols ensure compatibility, interoperability, simplify product development
and speed up time-to-market.
R032 0] The MPC shall include a monitoring and diagnostics interface accessible locally and via remote connection. F
ES/IOSCP' Rationale: In order to analyse the system behaviour and performance during development, test and operation, a
diagnostics interface is needed between Computing Platform deployments and the MDCM (Monitoring,
Diagnostics, Configuration, and Maintenance).
R0O33 O# Where application-level platform independence is used, the MPC shall support monitoring of the execution of Functional F
MSCP- System components, for instance by capturing KPIs related memory usage, processor load, etc.
% Rationale: To support fault analysis as well as to monitor proper operation of deployed system.
R034 0] The MPC shall be able to provide logging and tracing information to an external entity. F
gA4SCP— Rationale: Logging and tracing are critical when analysing system behaviour and faults. Having a unified logging and
tracing concept dramatically simplifies the analysis.
R0O35 (0] The MPC shall provide safe and secure mechanism to update the run-time environment locally and remotely. F
(';A?SgZé Rationale: The ability of updating the platform software is essential. To minimize maintenance cost, the normal update

deployment mechanism shall be remotely (e.g., over-the-air) with no need for physical presence of any
maintenance personnel on site (e.g., on the train). In case remote updates fail for any reason, it must be
possible to perform local updates with physical access to the MPC. Updates shall be uploaded via industry
standard interfaces.

Remark: Remote updates must not affect the proper operation of MPCs and might need explicit planned scheduling to
be applied.

FP2-WP26-D-DBN-003-06 Page 127 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Requirement Scope
R036 0] The MCP shall provide safe and secure mechanisms to update the MPC configuration locally and remotely. F
MSCP- Rationale: The ability of updating the platform configuration is essential. To minimize maintenance cost, the normal
68 & 63 . S .
update deployment mechanism shall be remotely (e.g., over-the-air) with no need for physical presence of any
maintenance personnel on site (e.g., on the train). In case remote updates fail for any reason, it must be
possible to perform local updates with physical access to the MPC. Updates shall be uploaded via industry
standard interfaces.

Remark: Remote configuration updates must not affect the proper operation of MPCs and might need explicit planned

scheduling to be applied.
RO37 (0] The MPC shall provide safe and secure mechanisms to update Functional Systems as a whole or their selected individual F
MSCP- components locally and remotely.
&6 Rationale: The ability of updating Functional Systems as a whole or some of their components is essential. To minimize
maintenance cost, the normal update deployment mechanism shall be remotely (e.g., over-the-air) with no
need for physical presence of any maintenance personnel on site (e.g., on the train). In case remote updates
fail for any reason, it must be possible to perform local updates with physical access to the MPC. Updates shall
be uploaded via industry standard interfaces.

Remark: Software updates of the Functional System are performed by the platform, but software updates of entities
controlled by the Functional System are in the responsibility of the Functional System itself (e.g., update of field
elements).

R038 Oo# The MPC shall leverage existing specifications for interfaces where feasible. F
':/I182CP- Rationale: Proven interface specifications offer the necessary maturity level for the MPC. Also, existing implementations
for platform components can potentially be reused.
R0O39 O# The MPC shall minimize the number of function calls that are part the interfaces. F
';/I1S3CP' Rationale: A reduced set of function calls eases certification, acceptance and potentially portability.

FP2-WP26-D-DBN-003-06 Page 128 of 171 25/07/2025

RZDA TO Contract No. HE — 101102001 e‘

—urope’s
ID Source Requirement Scope
R040 O# The MPC shall define interfaces in a way that is evolvable over time and always enables backward-compatibility. F
';/I;CP_ Rationale: It is expected that the interfaces can evolve over time. Future evolved versions are expected to be decently
backward compatible to make sure that existing applications can be integrated in MPCs implementing future
versions.
R041 O# The MPC shall minimize the number of differences in the interface specifications for on-board and trackside environments. | F
':/I1S4CP- Rationale: A common platform simplifies the specification, and thus portability and reusability of common elements
between the different environments.
R042 O# The MPC shall provide capabilities for Functional Systems to obtain presence and state information of other Functional F
MSCP- Systems.
3 Rationale: If there are dependencies between Functional Systems, they need to know each other’s state (e.g., active,
inactive, degraded) and react if necessary.
R043 (0] Where application-level platform independence is used, the MPC shall provide a mechanism to Functional System F
MSCP- components for obtaining the current replica-synchronized time.
e Rationale: Functional System components need consistent, replica-synchronised time information which is exactly the
same for all replicas and can be used to create output that is voted on.
Remark: This is important if the time stamp has an impact on any (voted) output of a Functional System component.
R044 0] The MPC shall provide a mechanism to Functional System components for obtaining the current un-synchronised time. F
QABSCP- Rationale: Functional System components need un-synchronised time information e.g., replica for specific logging.
Remark: “Unsynchronised time” corresponds to the time at the point when a Functional System component requests this
(and for which different components of the same Functional System may obtain a different result).
R045 O Where application-level platform independence is used, the MPC shall complement messages with timestamps. F
';/IOSZCP- Rationale: Timestamps are important, so that receiving Functional System component can check whether and how

strongly received messages are outdated and possibly take appropriate action (i.e., either discard such
messages or take other action).

FP2-WP26-D-DBN-003-06 Page 129 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Requirement Scope
R046 0] Where application-level platform independence is used, the MPC shall inform the appropriate Functional System F
MSCP- component if it has not been able to conclude processing within a defined time period (once or multiple times, as
105 configured) and (if configured) shut down the Functional System component.

Rationale: If a Functional System component is not able to conclude processing within a defined time period (once or
multiple times), it either has to scale down its load (e.g., by shifting tasks to other Functional Systems, where
possible), or the platform has to shut it down.

R047 O# Where application-level platform independence is used, the MPC shall provide a standardized communication mechanism, | F
MSCP- to exchange messages between Functional System components.
76

Rationale: A standardized communication mechanism is needed in order to abstract safe and secure communication and
to enable a transparent encapsulated safety and fault tolerance mechanism, realized by the platform.

R048 O# Where application-level platform independence is used, the MPC shall provide a communications method with location F
MSCP- transparency to the Function System components.

116 Rationale: Addressing and routing should be transparent to the applications, and thus communication messages routed to

the appropriate recipients without needing to know their physical execution environment and location.

R049 O# Where application-level platform independence is used, the MPC shall provide a communications method with replication F
MSCP- transparency to the Function System components.
115

Rationale: The appropriate Functional Systems components have to be agnostic towards the fact that they might be
replicated. All complexities with communications coming from replicated execution has to be handled by the

platform.
R050 O# Where application-level platform independence is used, the MPC shall allow communications only by its own F
MSCP- communication mechanisms.

123 Rationale: Side channel communication not using the platform methods has to be avoided. Only this way, standardized

and safe communication can be established, and transparent replication implemented.

FP2-WP26-D-DBN-003-06 Page 130 of 171 25/07/2025

RZDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Requirement Scope
RO051 O# Where application-level platform independence is used, the MPC shall supervise configured maximum message delivery F
MSCP- times.
10 Rationale: Functional System components depend on reliable, reasonably deterministic communication with other
Functional System components. It is hence required that the platform supervises defined maximum message
deliverable times in, e.q., the scheduling of relevant Functional System components.
R052 Oo# Where application-level platform independence is used, the MPC shall ensure the correct ordering of all messages sent F
MSCP- and received by Functional System components.
81 Rationale: Functional System components can rely on the correct message distribution order without the need to
implement order checking logic.
R0O53 (0] Where application-level platform independence is used, the MPC shall conform to EN 50159. F
g/IOSCP- Rationale: In terms of safe communication, EN 50159 provides guidelines which shall be followed to ensure that we have
a common base for communication requirements.
Remark: Issues are identified by the platform (e.g., through the usage of message sequence numbers or some other
platform-specific mechanism).
R054 O# Where application-level platform independence is used, the MPC shall supplement messages with their time of creation. F
';/I1S70P_ Rationale: Time stamping is needed, so that receivers are able to determine how old messages are, and whether they
should still be processed or discarded, etc.
Remark: This might require the notion of synchronized platform clocks (also among distributed platforms, see also
RO043) at least to the extent/granularity (e.g., on the order of tens of ms) that is required to detect outdated
messages. When exactly the time stamping happens needs to be discussed.
R0O55 (0] The MPC shall provide a bi-directional interface to exchange diagnostics information with Functional System components. F
MSCP-

Rationale: Functional System components can use the interface, e.g., to receive diagnostics information or to report

1 diagnostic information to the platform.

FP2-WP26-D-DBN-003-06 Page 131 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Requirement Scope
Remark: Diagnostic information could for instance comprise the health status of the platform or a Functional System
component.
R056 0] The MPC shall provide an interface towards Functional System components for logging and tracing. F
I:/IziCP— Rationale: Applications have the need to provide log and trace data to the platform.
RO57 O# The MPC shall allow configuration of different logging and tracing levels and categories per platform and on a Function F
MSCP- System component level.
o6y Rationale: Depending on the required information, it is important to be able to enable logging and tracing only for certain
Functional System components and not for the entire system.
R058 S The Physical Computing Element shall be based on COTS components. F
18521;)205 Rationale: Leveraging COTS hardware provides several benefits, including cost-effectiveness, readily available
components, and ease of integration.
RO059 S# The SRACs of the Functional System shall not limit the use of shared hardware resources. F
SPI2CE: Rationale: To maximize the efficiency and flexibility of hardware usage it is essential to be able to aggregate Functional
1524) ; , ,
Systems of various suppliers on the same Physical Computing Element(s).
Satisfies: MPC-P06
R060 S The safety environment shall identify incorrect deployment of safety critical Functional System compartment. F
?;?CE_ Rationale: It is imperative that safety-critical functions employing composite safety, such as replication and voting, are
executed on distinct hardware devices.
RO61 S The safety environment shall not restrict mixed criticality on a physical computing element. F
?:LZCE- Rationale: To enable the wide range of applications with different critical levels to coexists and to attain resource

efficiency, flexibility, improved system utilization, optimized performance, and scalability.

FP2-WP26-D-DBN-003-06 Page 132 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Requirement Scope
R062 S The safety environment shall not restrict the creation/initialization of new compartments during runtime. F
1S5PZ1-82CE_ Rationale: To support dynamic configuration the system shall support the aggregation/deployment of Functional Systems
during runtime.
R063 S The safety environment shall support start/stop of Functional System compartments on another physical computing F
SPT2CE- element during runtime.
[t Rationale: To replace defective HW it is essential that the safety environment shall support Functional System
compartment management.
R064 S# The virtual computing element shall support the remote restart of an individual FS compartment at runtime. F
185P‘;I;320E- Rationale: This will allow to automate the recovery of FS during runtime.
R065 S# The safety environment shall support the synchronization of restarted/updated compartments. F
1854-;20& Rationale: To synchronize the safe applications replica with other running replicas after update/recovery.
R066 S Communication between functional systems (10) shall be realized with 2 redundant channels for availability. F
185;0205 Rationale: In order to support safety-critical communication, fulfilling availability requirements the FS system shall have
redundant and independent communication channel.
R067 S The Ol shall provide APIs and tools to orchestrate the FS Compartments. F
185P ;ZCE' Rationale: To facilitate the remote deployment of FS it is essential to implement mechanisms that automate, manage, and
coordinate Functional Systems in compliance with their certification requirements.
R068 S The virtualisation environment shall guarantee the assigned CPU resources (cores, memory, memory bandwidth, network F
SPT2CE- bandwidth, network latency) for a FS continuously (7 days /24 hours / 60 minutes / 60 seconds) without any influence or
1553 dependency to existence and behaviour of other FS aggregated on same computing element.

Rationale: The VE must provide the committed resources to all FS compartments and ensures no interference between
the virtual computing elements on same physical computing element.

FP2-WP26-D-DBN-003-06 Page 133 of 171 25/07/2025

' @EDA TO Contract No. HE — 101102001 5‘

=urope's
ID Source Requirement Scope
R069 S The configuration of the virtualization environment shall comply with the FS deployment rules. F
185P :;I;)ZCE- Rationale: To ensures the function and availability of the intended FS, it is crucial to adhere to its deployment rules.
RO70 S The virtualization environment shall provide standard Ol functionalities. F
18541;)205 Rationale: Having a common set of Ol functionalities for operating all Functional System(s) offers benefits such as
resource optimization, scalability, high availability, automation, and cost efficiency.
RO71 S The virtualization environment shall be based on COTS solutions. F
185PA:|-220E' Rationale: As there are already a wide range of COTS virtualization solutions available, developing a new one for railways
is prohibitive due to complexity and cost.
RO72 S Different virtualization approaches shall be allowed. F
?;LZCE' Rationale: There are several types of virtualizations approaches available in different domains, each with its own benefit.
Therefore, the virtualization solution could allow different implementation approaches as long as a standard
Orchestration Interface (Ol) is provided.
R073 S# X
SPT2CE- . ; .
1537 Remark: In the MPC, this interface is expected to be connected to the Platform Management, thus only available
internally. As such, no guidance on approaches and programming languages is necessary. The requirement
has been removed.
R074 S The Virtualization environment shall provide remote orchestration. F
1S: 3:[('32CE- Rationale: To enable the efficient management, scalability, cost reduction, it is essential to have a centralised FS

management.

Remark: In the MPC, this interface is expected to be connected to the Platform Management.

FP2-WP26-D-DBN-003-06 Page 134 of 171 25/07/2025

RZDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Requirement Scope
RO75 S The Virtual Environment shall allow uninstallation of individual compartment deployed on a virtual computing element F
SPT2CE- without interrupting neighbouring compartments on the same physical hardware.
1545

Rationale: To ensure the safety and availability of other Functional system compartments running on the same physical
computing element.

RO76 S The Virtualization Environment shall support remote creation of virtual computing elements without interfering with already F
SPT2CE- | running virtual computing elements on the shared physical hardware.
1544 Rationale: To enable remote dynamic configuration of virtual computing elements.
RO77 S The Virtualization Environment shall support remote deletion of virtual computing element without impacting other running F
SPT2CE- virtual computing element on the shared physical hardware.
I Rationale: To enable remote dynamic configuration of virtual computing elements.
R0O78 S The Virtualization Environment shall provide full hardware abstraction. Changes in the underlying COTS HW may not have | F
SPT2CE- any impact to the FS running on the virtualisation environment.
1535 Rationale: Virtualization Environment must be compatible to all the hardware architecture such as x86, ARM, PowerPC,
and others to support seamless integration of FS.
Remark: There is no requirement towards full hardware emulation across different CPU architectures.
R0O79 S The Virtualization Environment shall support to do updates of the virtualisation environment computing-element-wise "one F
SPT2CE- after the other" without affecting the virtualisation environment on the other virtual computing elements.
I Rationale: This is necessary to update the virtualisation environment (e.g. due to IT-sec patches) during runtime of the
FS.
R080 S# The Virtualization Environment shall provide (backward) compatibility at the configuration interface. F

SPT2CE-

1552 Rationale: A new version of the virtualisation environment shall not have any impact on the FS related configuration data.

The configuration of the virtual machine (resources, communication interfaces, etc.) shall not change.

Remark: In the MPC, the changes in the actual interface would be adapted in the Platform Management.

FP2-WP26-D-DBN-003-06 Page 135 of 171 25/07/2025

m Contract No. HE — 101102001 5‘

=urope's
ID Source Requirement Scope
R081 S The Virtualization Environment shall provide the diagnostic interface to monitor the virtual computing element. F
1S5PI72CE' Rationale: The diagnostic will allow to monitor the health of virtual computing elements and may detect SW crashes and
enable automatic recovery.
Remark: This is connected to the Platform Management in MPC.
R082 S The Virtualization Environment shall provide detailed predictive diagnosis about the health state of the physical computing F
SPT2CE- | element(s).
1554 Rationale: The predictive diagnosis will allow to monitor the health of physical computing element and may detects HW
faults earlier.
R083 S The Virtual Environment shall provide mechanism to ensures the correct deployment of FS compartments. F
185P‘;I'82CE- Rationale: To ensure the safety requirements such as to run each replica of FS compartment on distinct physical
computing element.
R084 + When non-safe software parts are changed, the MPC shall ensure that there is no impact on the safe software parts. F

Rationale: Changing resp. updating non-safe parts (e.q., Basic Integrity applications or parts of the RTE/VE, security
updates, etc.) must not create any situation where previously reached conclusions on the freedom of
interference towards safe software parts are invalidated. Meaning that changing or updating non-safe parts
does not lead to re-certification of safe parts.

Satisfies: MPC-P02

Table 10: Selected Modular Platform Requirements

FP2-WP26-D-DBN-003-06 Page 136 of 171 25/07/2025

m Contract No. HE — 101102001 6‘

=urope's

APPENDIX B HLPI REQUIREMENTS

Column Meaning ‘
Source S: SP CE Domain OAS [15] (released to Mirror Group on 2024-05-07)
+: new

#: (heavily) modified or rewritten

Allocation FS: Functional Systems
VE: Virtualization environment
SE: Safety Environment
SS Diag: Shared Services for Diagnosis
MPM: Modular Platform Management

Network Diagnosis

Scope F: full (all target environments)
OB: On-board required, trackside optional
TS: Trackside required, on-board optional
O: optional for all environments

X: notin scope for work package 26

FP2-WP26-D-DBN-003-06 Page 137 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 5‘

=urope's
ID Source Allocation Requirement Scope
REQ-HLPI-1 + SE Each solution of a Safety Environment shall define the own safety concept in a way which allows F
6.2.4 the usage of a non-safe VE.
6.7.1 The SE itself must identify if the safety related parts of the FS are not running in the required time

range or performance.

Each miss-behaviour of the VE as e.g. wrong scheduling of the individual FS software parts may
not have any impact onto the safety of the FS.

The SE can'’t rely on the behaviour of the VE, means the SE must identify each misbehaviour of
VE and react safe.

Information about misbehaviour of the VE must be provided as diagnosis by FS.

Rationale: For aggregation of several FS compartments on a common non-safe VE its essential
that the VE shall not have any dependency to safety.

REQ-HLPI-2 + VE The VE shall provide the mapping of CPU cores exclusively to VCE. F

6.3 Rationale: For aggregation of several FS compartments on common VE on the same hardware
its essential that the VE provides a stable runtime behaviour of each FS compartment
by exclusive core usage.

REQ-HLPI-3 + VE The CPU performance provided by the mapped CPU resources must be guaranteed for every F
6.3 timepoint during the runtime of an FS Compartment.

Rationale: Variations or instabilities in the provided CPU performance will be identified by the SE
and will directly lead to reduced availability as consequence of reactions by the SE.
Example: If an individual application replica does not react in the required time then
this will be evaluated as a misbehaviour of the application replica and this leads to
reduced availability (as e.g. running mode reduced from 2003 to 2002).

FP2-WP26-D-DBN-003-06 Page 138 of 171 25/07/2025

=>R20470

ID Source Allocation
REQ-HLPI-4 + VE
6.3

REQ-HLPI-5 + VE
6.4.1

REQ-HLPI-6 + VE
6.4.2

REQ-HLPI-7 + SE
6.6

FP2-WP26-D-DBN-003-06

(=

=urope's

Contract No. HE — 101102001

Requirement Scope

The installation of additional FS Compartments (of other FS) in additional VCEs on the same F
Virtualization Environment Instance must not have any impact on the guaranteed CPU
performance (cores) for running FS Compartments.

Rationale: The stability of the CPU resources is essential for independent handling of individual
FS running aggregated in parallel on same VE.

The individual VCE configurations of FS compartments shall be modular and independent. Each F
FS Compartment shall have its own configuration for the VCE. Adding or deleting of FS
compartments onto the VE instance must not have any impact on the VCE configuration of the
other FS compartments.

Rationale: The independency of VCE configuration is essential for independent handling of
individual FS running aggregated in parallel on same VE.

The virtualization environment shall provide defined and stable user interfaces for the configuration | g
of the usage by FS compartments. A new version of the VE may not have any impact onto the VE
Configuration of the FS compartment.

Each change in the user interface for the VE configuration shall be compatible in such a way that
existing VE configs (of already running system) can be used furthermore.

Rationale: The independency of VCE configuration is essential for independent handling of
individual FS running aggregated in parallel on same VE.

Safety concept of each SE solution must be basically independent from the processor instruction F
set to be able to change the CPU architecture without impact to the safety concept.

Rationale: For future proofness in context of usage of COTS hardware it’s essential to be able to
change the processor instruction set without impact onto the basic safety concept.

Page 139 of 171 25/07/2025

m Contract No. HE — 101102001 5‘

=urope's

ID Source Allocation Requirement Scope

REQ-HLPI-8 + VE The VE shall support “incompatibilities in detail” in context of hardware spare handling. F
6.6 The usage of a hardware spare part may not have any impact onto the FS compartments.

Rationale: Ordering of the same hardware does not guarantee that the exact same hardware is
delivered with 100% compatibility to the software.
HW internal changes of details are possible.

REQ-HLPI-9 + VE The VE shall support the usage of different variants of hardware — provided by different vendors — TS
6.6 at in parallel at the same time.

Needed adaptions within the VE for usage of a new hardware variant may not have any impact on
the VE instances with already running FS compartments.

Rationale: It’'s essential for efficient handling of COTS hardware to avoid the impact on already
running FS compartments.

REQ-HLPI-10 + VE The virtualization environment shall provide a “native running hardware access” (NHA) F
6.7.1.x functionality to provide needed information from the physical hardware in a reliable way to the SE.

A first set of identified information is:

6.7.1.1 - Unique identification of the physical hardware device
6.7.1.2 - Core pinning

6.7.1.3 - steady clock input source from the physical hardware
6.7.1.4 - CPU and/or other temperature of the physical hardware
6.7.1.5 - Voltage information

Rationale: The details regarding the needed data depend on the SE solution.
The “native running mode” of NHA is essential to achieve the needed reliability of the
data required by SE solutions. Reliability in such a way that argumentation “data can’t
be influenced systematically” can be done for up to SIL4.

FP2-WP26-D-DBN-003-06 Page 140 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 5‘

=urope's
ID Source Allocation Requirement Scope
REQ-HLPI-11 + SE The SE itself must ensure that the FS compartments are deployed in correct way running on F
6.7.1.x different physical computing elements. In case of a false deployment (FS compartments running

on the same physical computing element) the SE must identify the failure and react in a safe way.

Rationale: Usage of non-safe SW as VE and for orchestration is not reliable. By this the SE must
check the correct distribution on different physical computing elements.

REQ-HLPI-12 + SE The SE shall realize safety mechanism to ensure the consistency of the safety related SW parts of | g
6.7.2 an up to SIL4 FS.

Rationale: by usage of non-safe SW for VE, operating system and orchestration software it's not
guaranteed that stopping, deleting and starting of safety related software is

successful.
REQ-HLPI-13 + VE 3 party supplier of VE has to consider IEC 62443 to provide certification as needed. F
6.8 Rationale: Fulfilment IEC 62443.
REQ-HLPI-14 + VE The VE shall guarantee a perfect stable behaviour in context of runtime and reaction time of the F
6.9.1 SW parts within FS compartments.

Rationale: Variations or instabilities in the provided CPU performance will be identified by the SE
and will directly lead to reduced availability as consequence of reactions by the SE.
Example: If an individual application replica does not react in the required time then
this will be evaluated as a misbehaviour of the application replica and this leads to
reduced availability (as e.g. running mode reduced from 2003 to 2002).

REQ-HLPI-15 + SE The SE shall support to repair a failed FS compartment during the operational phase of the FS, F
6.9.2 synchronization of the repaired FS compartment with the running FS compartments shall be done
automatically by the SE to achieve full redundancy again.

Rationale: Highest FS availability in context of SW maintenance: avoid stopping of the FS due to
repair of an individual failure.

FP2-WP26-D-DBN-003-06 Page 141 of 171 25/07/2025

m Contract No. HE — 101102001 5‘

=urope's
ID Source Allocation Requirement Scope
REQ-HLPI-16 + VE The VE shall support the mapping of VCEs to virtualized ethernet adapters and the alignment of F
6.9.3 virtualized Ethernet adapters to physical Ethernet cards of the PCE.
Rationale: Flexible usage of Ethernet communication without dependency to FS internal
configurations.
REQ-HLPI-17 + VE The VE shall provide for new VE versions backwards compatibility of the VE configuration F
6.4.2 interface for FS configuration.
6.13.1 Rationale: It must be avoided that a SW update of the VE leads to impact on the VCE Configs of
T the FS Compartments running above.
REQ-HLPI-18 + FS The FS shall allow to update basic integrity SW parts as e.g. the IT security mechanism F
6.9.4 individually FS compartment-wise “one after the other” during operational phase of the FS.
Rationale: Highest FS availability in context of SW maintenance: avoid stopping of the FS due to
installation of an IT-security patch.
REQ-HLPI-19 + VE The VE shall allow to update the VE software hardware-wise “one after the other” during TS
6.9.4 operational phase of the FS running above.
Rationale: Highest FS availability in context of SW maintenance: avoid stopping of the FS due to
installation of an IT-security patch.
REQ-HLPI-20 + PM The Platform Management must handle the dependency to update “one-after-the-other” during TS
6.9.4 runtime of the FS.

Rationale: Highest FS availability in context of SW maintenance: avoid stopping of the FS due to
installation of an IT-security patch.

FP2-WP26-D-DBN-003-06 Page 142 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's
ID Source Allocation Requirement Scope
REQ-HLPI-21 + PM The Platform Management shall collect the diagnosis data of the VE and 3rd party SW (as e.g. for F
6.11 COTS hardware diagnosis) and provide this data via interface 11 to the Shared Services
Diagnosis.

Rationale: Standard solutions for VE / COTS diagnosis will not consider the interface |1
Diagnosis. By this a “protocol-conversion” is necessary to provide the diagnosis data
in the required format.

REQ-HLPI-22 + PM The Platform Management shall process a root cause analysis for the FS state and initiate F
6.11 necessary maintenance activities automatically.

Rationale: It must be avoided that a SW update of the VE leads to impact on the VCE Configs of
the FS Compartments running above.

REQ-HLPI-23 + FS The FS shall provide diagnosis data about the own health state via the interface 11 FS Diagnosis F
6.11.2 to the Shared Services for diagnosis.

Rationale: Shared Services for diagnosis are data sink for all kind of diagnosis data.

REQ-HLPI-24 + FS The FS shall provide diagnosis data about the own health state via the interface 11 FS Diagnosis F
6.11.2 to the Platform Management.

Rationale: Platform Management is the data sink for diagnosis data which is relevant for the
handling of FS compartments running in VCEs on VPEs.

REQ-HLPI-25 + PM The Platform Management must handle the relationship “one FS consists of several individual FS = F
6.11.2 compartments which provide own diagnosis data”.

Diagnosis data of the individual compartments must be aggregated to an overall state of the FS
and this state must be provided via the interface 11 Diagnosis to the Shared Services Diagnosis.

Rationale: Shared Services for diagnosis shall get a defined FS state (independent from details
about the solution that the FS is running in several compartments).

FP2-WP26-D-DBN-003-06 Page 143 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 5‘

=urope's
ID Source Allocation Requirement Scope
REQ-HLPI-26 + VE The VE shall provide diagnosis date about the VE itself and about the underlying physical F
6.11.3 hardware to the PM. The data must be provided by the VE management tool to the Platform

Management.

Rationale: Platform Management is data sink for all diagnosis data relevant for the handling of
the FS compartments within VCEs running on PCEs.

REQ-HLPI-27 + PM The Platform Management must forward the diagnosis data about the VE and VCEs to the F
6.11.3 Shared Services for diagnosis. For this the interface 11 Diagnosis must be considered.

Rationale: Shared Services for diagnosis are data sink for all kind of diagnosis data.

REQ-HLPI-28 + VE Information about the health state of the virtual computing elements and physical computing F
6.11.4 elements shall be provided by the VE or even additional dedicated diagnosis software provided by
o 3" party.

Rationale: Platform Management is data sink for all diagnosis data relevant for the handling of
the FS compartments within VCEs running on PCEs.

REQ-HLPI-29 + VE A dedicated software for diagnosis of the physical computing elements shall provide diagnosis F
6.11.4 data to the Platform Management.

Rationale FS running in VCEs is not able to identify details about the detailed states of PCEs,
FS only reacts in case of failures within the PCEs. By this a dedicated diagnosis
software for the PCEs is necessary.

REQ-HLPI-30 + PM The Platform Management must forward the diagnosis data about the physical computing F
6.11.4 elements to the Shared Services for diagnosis. For this the interface 11 Diagnosis must be
considered.

Rationale: Shared Services for diagnosis are data sink for all kind of diagnosis data.

REQ-HLPI-31 + Network The Network Diagnosis shall provide the diagnosis data about the network to the Platform F
6.11.5 Diagnosis Management.

FP2-WP26-D-DBN-003-06 Page 144 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's

ID Source Allocation Requirement Scope

Rationale: Platform Management is data sink for all diagnosis data relevant for the handling of
the FS compartments within VCEs running on PCEs. Network is relevant for the FS
internal communication between the FS compartments. By this the network diagnosis
is necessary for root cause analysis about FS state.

REQ-HLPI-32 + PM The Platform Management must handle the relationship between FS compartments and the F
6.11.5 belonging network communication. Diagnosis data related to the network communication shall be
evaluated with be belonging FS compartments in context of root cause analysis.

Rationale: Platform Management is data sink for all diagnosis data relevant for the handling of
the FS compartments within VCEs running on PCEs. Network is relevant for the FS
internal communication between the FS compartments. By this the network diagnosis
is necessary for root cause analysis about FS state.

REQ-HLPI-33 + SE The SE shall support to update the own operating system (with IT-security layer) within the FS F
6.12.1 compartment compartment-wise “one after the other” to install IT-security patches during runtime
o of the FS.

Rationale: IT-security patching during operational phase of the FS.

REQ-HLPI-34 + VE The VE shall support to update the VE instances (with IT-security layer) hardware-wise “one after | TS
6.12.1 the other” with a new version of the VE instance SW to install IT-security patches during runtime
of the FS. After the VE instance update the FS compartments shall be started automatically to
achieve full redundancy, e.g., to achieve 2003 again.

There must not be the dependency to install an update of the VE on all PCEs at same timepoint,
because this would lead to stop of all FS compartments.

Rationale: IT-security patching during operational phase of the FS.

REQ-HLPI-35 + VE The VE shall allow to replace a physical computing element by another physical computing TS
6.12.1 element without impact onto the running VE instances.

Rationale: Replacing individual PCEs during operational phase of the FS.

FP2-WP26-D-DBN-003-06 Page 145 of 171 25/07/2025

@2 Contract No. HE — 101102001 5‘

—urope’s

FP2-WP26-D-DBN-003-06 Page 146 of 171 25/07/2025

m Contract No. HE — 101102001 é

=urope's ~all

APPENDIX C ALPI REQUIREMENTS

Column Meaning ‘
Source S: SP CE Domain OAS [15] (released to Mirror Group on 2024-05-07)
+: new

#: (heavily) modified or rewritten

Allocation RT: runtime
CF: configuration

OP: offline process (data preparation, certification)

Scope F: full (all target environments)
OB: On-board required, trackside optional
TS: Trackside required, on-board optional
O: optional for all environments

X: not in scope for work package 26

FP2-WP26-D-DBN-003-06 Page 147 of 171 25/07/2025

RZDA TO Contract No. HE — 101102001 e‘

=urope's

ID Source Allocation Requirement Scope
REQ-ALPI-01 732 1 RT, CF The ALPI shall provide an independent interface towards MPC. F

Rationale: The development of a Functional Application shall be independent from the MPC
platform. ALPI's interface shall be able to hide different MPC implementations based on
different HW and SW. Independence shall be based on a common set of ALPI, based on
a shared architecture and a common platform behaviour,

Satisfies: MPC-P01, MPC-P02, MPC-A03, R17

REQ-ALPI-02 RT, CF The ALPI shall provide a standard interface. F

Rationale: The development of a Functional Application shall be based on a standard RTE interface.
The standard interface should allow re-use and easy integration of the Functional
Application in the case of different RTE suppliers. ALPI shall provide a standardised
language to specify the application’s deployment-configuration.

Satisfies: MPC-P01, MPC-P05, MPC-P07,

REQ-ALPI-03 RT, CF The ALPI shall provide a flexible interface. F

Rationale: The ALPI interface shall allow maximum flexibility in the use of all available RTE services
and COTS SW, especially in the case of Non-Safety-Related Functional Applications that
shall be developed with maximum flexibility to take full advantage of the evolution of ICT
and OT technologies. Constraints that limit the use of products with new technologies
developed in the COTS environment should be avoided. For Safety-Related Functional
Applications ALPI shall provide implicit restrictions, selected via configuration,
transparently implemented by runtime services, imposed through adoption of common
standard models.

Satisfies: MPC-P01, MPC-P05

REQ-ALPI-04 | 7 4 RT, CF The ALPI shall reduce the complexity of Functional Application development. F

Rationale: The ALPI interface shall allow the development of Functional Application in which the
complexity of the mechanisms needed to ensure communication, safety and security are
not directly managed by Functional Engineer. ALPI shall minimize the number of services

FP2-WP26-D-DBN-003-06 Page 148 of 171 25/07/2025

' @EDA TO Contract No. HE — 101102001 5‘

=urope's

ID Source Allocation Requirement Scope

the number of differences in the interface specifications for on-board and trackside
environments.

Satisfies: MPC-P01,MPC-P03, R028, R039, R040, R041

REQ-ALPI-05 RT The ALPI shall provide compatibility. F

Rationale: The ALPI interface shall be developed to assure backword compatibility during the future
evolution of the ALPI interface.

Satisfies: MPC-P04, MPC-P05, R40

REQ-ALPI-06 RT The ALPI shall provide transparency. F

Rationale: The ALPI interface shall provide services that implement mechanisms/ protocols/ needed
to achieve transparency of location, communication, safety, security.

Satisfies: MPC-P01,MPC-P03, R004, R048, R049.

REQ-ALPI-07 73 1.1 RT The ALPI shall provide a common standard development model. F

e Rationale: The development of a Functional Application shall be based on the “Functional

Application Task” concept. FAT is the basic component of a Functional Application. ALPI
shall provide all services necessary to the creation, configuration, communication,
scheduling, aggregation of FAT.

Satisfies: MPC-P01,MPC-P03,
REQ-ALPI-08 (removed) X
REQ-ALPI-09 RT, CF The ALPI shall provide a configurable set of services to implement Non-Safe, Basic Safety Integrity | F

and Safety Integrity Level SIL1-SIL4 Functional Application. ALPI shall allow restriction of the set by
means of configuration.

Rationale: ALPI shall provide a selected set of services depending on SIL of the Functional
Application.

FP2-WP26-D-DBN-003-06 Page 149 of 171 25/07/2025

m Contract No. HE — 101102001 5‘

=urope's
ID Source Allocation Requirement Scope
Satisfies: MPC-P03
REQ-ALPI-010 (removed) X
REQ-ALPI-011 RT, CF The ALPI shall provide a restricted set of services to implement Basic Safe Functional Application. F

Rationale: Basic Integrity Level Functional Application shall be developed using services compliant
with Basic Integrity Level requirements as specified in EN 50xxx. ALPI shall allow
restriction of the set by means of configuration.

Satisfies: MPC-P03,MPC-G02 , RO1

REQ-ALPI-012 RT, CF The ALPI shall provide a restricted set of services to implement SIL1,.. SIL4 Functional Application. | F

Rationale: SIL1,.. SIL4 Functional Application shall be developed using ALPI services compliant with
CENELEC standard as specified in EN 50xxx. In case of SIL4 FA, ALPI shall allow the
implicit enabling of the transparent mechanisms that implement composite safety. ALPI
shall allow restriction of the set of services by means of configuration.

Satisfies: MPC-P03, R001, RO61

REQ-ALPI-013 73 1 The ALPI shall allow the aggregation of Functional Applications with different SIL F
Rationale: aggregation of mixed SIL Functional Application.

Satisfies: MPC-P03, R002, RO61

REQ-ALPI-014 | 7313 RT The ALPI shall provide runtime Security functions in the scope of the Functional Application F

Rationale: ALPI shall provide security services related to PKI management, authentication
management, cryptographic verification/validation inside FAT. Security related to external
communication is managed end-to-end with TLS at network level and it is not in scope of
runtime services of ALPI. ALPI shall provide information of the Security level of network
communication via configuration.

Satisfies: R009, R0O10

FP2-WP26-D-DBN-003-06 Page 150 of 171 25/07/2025

RZDA TO Contract No. HE — 101102001 e‘

—urope’s
ID Source Allocation Requirement
REQ-ALPI-015 (removed)
REQ-ALPI-016 7 1 OoP The ALPI shall provide an offline Configuration data structure aimed to characterize the Functional
Application

Rationale: ALPI shall provide a configuration data structure for the purpose of characterizing ALPI
services with respect to functionalities related to communication, safety, security,
orchestration, logging of a Functional Application.

Satisfies: R028, R036

REQ-ALPI-017 7354 RT, CF, OP The ALPI shall provide Models for Functional Application life-cycle.

Rationale: ALPI shall provide models to standardize life-cycle management; list to consider:
e SW Architecture model: Functional Application is one or more processes

Life-Cycle safety assessment model: compliant with CENELEC

Process model: Task (UNIX process, ref. glossary)

Programming Model: Task, deterministic scheduling, RTC for Safety Related Functional

Application

Executable generation model: validated compiler, linker, loader

Timing Model: timer-clock, execution deadline of FAT

Execution model: Start/Init, Operate, Stop/shutdown

Communication Model: MOM, standard P2P, publish/subscribe, transparent application of

Gateway concept for external communication; use of OPC/UA, SNMP standard protocols

e Configuration Model: Application Engineering Configuration data; Application-specific RTE
data (for FA integration and runtime execution)

e Security Model: compliant with IEC622443, EN50701, IEC 63452

e Maintenance Model: provided by RTE; interoperable with external orchestration services IF-
ORCH

e Logging Model: provided by RTE SYSLOG services; interoperable with external services IF-
DIAG

e Error handling: according to CENELEC EN50129:2018

e Diagnostics model: Collection of Functional Application analytics for KPIs

Satisfies: R009, R010, R011, RO19, R020, R021, R022, R023, R024, R028, R033, R047

FP2-WP26-D-DBN-003-06 Page 151 of 171

25/07/2025

m Contract No. HE — 101102001 5‘

=urope's

ID Source Allocation Requirement Scope

REQ-ALPI-018 CF The ALPI shall provide an offline Deployment data structure aimed to deploy or update Functional F
Application

Rationale: ALPI shall provide a data structure for the purpose of deploying a Functional Application.
The data structure is transparently used for orchestration purposes. The deployment
data structure shall be used to check FA configuration and FA executable integrity.

Satisfies: R035, R036

REQ-ALPI-019 7313 RT, CF The ALPI shall provide resources/mechanism/services for Application Logging, Monitoring, F
Diagnostics.

Rationale: ALPI shall provide a data structure and services for the purpose of exporting Functional
Application data to external entities. The data is selected through configuration, and it is
transparently used for logging purposes. It shall be also possible direct logging, via
SYSLOG (RTE) services

Satisfies: R034, R056, R0O57

REQ-ALPI-020 732 1 RT, CF The ALPI shall provide the SRAC to be fulfilled by a safety related Functional Application. F

7.3.2.3 Rationale: ALPI shall provide a clear definition of SRAC to be fulfilled by the Functional Application.
These SRAC are imposed by lower layer if necessary.

Satisfies: R008

REQ-ALPI-021 7353 RT, CF The ALPI shall provide the SRAC to be exported to installation, maintenance phases. F

Rationale: ALPI shall provide a clear definition of SRAC to be exported to installation, maintenance
phases.

Satisfies: R008

FP2-WP26-D-DBN-003-06 Page 152 of 171 25/07/2025

m Contract No. HE — 101102001 5‘

=urope's
Detailed requirements for previous general topic
ID Source Allocation Requirement Scope
REQ-ALPI-022 73 1 1 RT, CF The ALPI shall provide a SW architecture model where a Functional Application SW is implemented F

through one or more process. A process is referred to as a "UNIX process" as specified in UNIX RTE
environment.

Rationale: ALPI shall provide standard sw architecture model for developing Functional Application.
REQ-ALPI-023 (removed) X
REQ-ALPI-024 73 1 1 RT, CF The ALPI shall provide services and functionalities compliant with the CENELEC life cycle. The F

related documentation shall be usable for modular certification.

Rationale: ALPI shall provide standard life-cycle model for assessing a Functional Application.

Satisfies: R11

REQ-ALPI-025 73 1 1 RT, CF The ALPI shall provide a standard POSIX interface. This interface is directly mappable on every F
POSIX compliant RTE.

Rationale: ALPI shall provide a standard interface

REQ-ALPI-026 73 11 RT, CF The ALPI shall provide a UNIX process model to develop Functional Application. ALPI interface F
should be POSIX.

Rationale: ALPI shall provide a process model to develop Functional Application Process

REQ-ALPI-027 73 1 1 RT, CF The ALPI shall provide a Programming Model in which process are realized with task; tasks are F
executed using deterministic behaviour. For deterministic, safety related task the RTC (Run To
Completion) schema should be used.

Rationale: ALPI shall provide a Programming Model to develop deterministic Functional Application
Process

FP2-WP26-D-DBN-003-06 Page 153 of 171 25/07/2025

Raoar0

ID Source
REQ-ALPI-028 7 463

REQ-ALPI-029 734>

REQ-ALPI-030 7313

REQ-ALPI-031 7314

REQ-ALPI-032 7314

FP2-WP26-D-DBN-003-06

Allocation

RT, CF

RT, CF

RT, CF

RT, CF

RT, CF

Contract No. HE — 101102001 6‘

=urope's

Requirement

The ALPI shall provide an Execution Model of Functional Application Tasks. Task Execution shall be
e timer-based, i.e., in configured regular intervals, or in the form of one-shot timers.
e event-based, i.e., upon receipt of (certain types of messages).
e timer- and event-based, i.e., the Task obtains execution time in regular intervals, or in the
form of one-shot timers, only if (certain types of) messages have (or have not) been received.
The specific execution modes are defined in the ALPI configuration

Rationale: ALPI shall provide an Execution Model of a Functional Application Process.

Satisfies:

The ALPI shall provide qualified tools (compiler, linker, loader, ...) for executable generations.
Rationale: ALPI shall provide qualified tools for executable generations

Satisfies:

The ALPI shall provide services for timer-clock, for defining and controlling execution deadline of task.
Rationale: ALPI shall provide timing model to be used by Functional Application tasks

Satisfies: R19, R020, R022, R025, R031

The ALPI shall provide services to Start/Init, Operate, Stop/shutdown a Functional Application task.
Rationale: ALPI shall provide an Execution model to be used by Functional Application

Satisfies: R016

The ALPI shall provide standard communication services. These services shall be based on MOM,
P2P and publish/subscribe paradigms. ALPI services shall allow the use of OPC/UA, SNMP or other
standard protocols (e.g., as defined in Subset 147). It should be possible to apply transparently the
Gateway concept for external communication.

Rationale: ALPI shall provide a Communication Model to be used by Functional Application

Satisfies: R028, R30

Page 154 of 171

Scope
F

25/07/2025

@EDA TO Contract No. HE — 101102001 5‘

=urope's

ID Source Allocation Requirement Scope

REQ-ALPI-033 7322 RT, CF The ALPI shall provide two types of configuration data: Application Engineering Configuration data F
and Application-Specific RTE data. AEC data for configuring application (i.e IXL DB, data preparation,
etc, communications IDs). ASRTE data for Functional Application integration and runtime execution.

(i.e. cycle time, communication nodes, SIL of tasks, ...).

Rationale: ALPI shall provide a Configuration Model to define the behaviour of a Functional
Application.

Satisfies: R030

REQ-ALPI-034 749 RT, CF The ALPI shall provide security services compliant with IEC62443, EN50701, IEC 63452. Security on F
communication is transparent to ALPI and it is transparently managed end-to-end by lower layers.
Specific security services such as cryptographic algorithm are provided by ALPI run time services.

Specific requirement related to the use of PKI (Public key infrastructure) are defined via ALPI
configuration and properly implemented by lower layers.

Rationale: ALPI shall provide a Security Model to be used by Functional Application
Satisfies: R009

REQ-ALPI-035 74 11 RT, CF The ALPI shall provide maintenance services for Functional Application. These are provided by RTE F
and shall be interoperable with external orchestration services (IF-ORCH).

Rationale: ALPI shall provide a Maintenance Model for a Functional Application

Satisfies: MPC-P05

REQ-ALPI-036 7313 RT, CF The ALPI shall provide Logging services for Functional Application. Run-time Logging will be provided @ F
by RTE through Syslog services. Implicit logging of specific application data is achieved
through configuration, specifying data and frequency of logging. The logged data shall be
interoperable with external services IF-DIAG.

Rationale: ALPI shall provide a Logging Model for a Functional Application
Satisfies: R032, R033, R057

FP2-WP26-D-DBN-003-06 Page 155 of 171 25/07/2025

m Contract No. HE — 101102001 e

=urope's ~all
ID Source Allocation Requirement Scope
REQ-ALPI-037 7466 RT, CF The ALPI shall provide error handling services according to CENELEC EN50129:2018. F
Rationale: ALPI shall provide a standard Error Model for a Functional Application
Satisfies: R024
REQ-ALPI-038 7313 RT, CF The ALPI shall provide Diagnostics services. It will be possible the Collection of Functional F

Application analytics for KPIs.
Rationale: ALPI shall provide a standard Diagnostics Model for a Functional Application

Satisfies: R033

FP2-WP26-D-DBN-003-06 Page 156 of 171 25/07/2025

m Contract No. HE — 101102001 5‘

=urope's

APPENDIX D MANAGEMENT, DIAGNOSTICS AND SECURITY RELATED INTERFACE REQUIREMENTS

This Appendix lists requirements for the interfaces as discussed in chapter 8, Management, Diagnostics and Security related Interfaces.

Column Meaning ‘
Source S: SP CE Domain OAS [15] (released to Mirror Group on 2024-05-07)
+: new

#: (heavily) modified or rewritten

Allocation VE: Virtualization environment
SS Diag: Shared Services for Diagnosis

MPM: Modular Platform Management

Scope F: full (all target environments)
OB: On-board required, trackside optional
TS: Trackside required, on-board optional
O: optional for all environments

X: not in scope for work package 26

FP2-WP26-D-DBN-003-06 Page 157 of 171 25/07/2025

m Contract No. HE — 101102001 é

=urope's ~all

D.1 COMMON REQUIREMENTS

ID Source Allocation Requirement
(needed?)
GEN-1 EuroSpec, RE Data transfer shall have no influence on the operation of the overall system. F
TCMS_DS

Rationale: Separation and (de-) prioritization of the data transferred on networks, etc. needs to
be guaranteed.

GEN-2 EuroSpec, RE All interfaces shall support means for authentication and encryption. F
TCMS_DS

GEN-3 S RE All interfaces shall provide means for the connected entities to check whether the interface isup F
SPT2CE-1421, and running.
Step 4

EuroSpec [22] provides additional specifications on Software Updates [23] and Maintenance Software [24], which have not yet been considered in
this deliverable but might be investigated in further work on the topic.

FP2-WP26-D-DBN-003-06 Page 158 of 171 25/07/2025

=>R20470

D.2 REQUIREMENTS ON CEME-DIAG

Contract No. HE — 101102001

(=

=urope's

For the source references, please refer to [15].

ID

CEME
DIAG-1

CEME -DIAG-2

CEME -DIAG-3

CEME -DIAG-4

CEME -DIAG-5

CEME -DIAG-6

CEME -DIAG-7

Source

+

+

S#

SPT2CE-1489 - SW
Failure of one
complete VE Instance

S#

SPT2CE-1489 - SW
Failure of one
complete VE Instance

S#

SPT2CE-1487 - SW
Failure of all VE
Instances

S#

SPT2CE-1487 - SW
Failure of all VE
Instances

FP2-WP26-D-DBN-003-06

Allocation

VE

VE

VE

VE

VE

VE

VE

Requirement

It shall be possible to configure the Virtual Machine Management w.r.t. which diagnostics
information types are provided to the Platform Mgmt.

Diagnostics information provided by the Virtual Machine Management shall contain time

stamps.

Scope

TS

TS

Diagnostics information exchanged shall be based on standardized naming convention for ' TS

entities (CPUs, eftc.).

The Virtual Machine Management shall issue a diagnostics information when a failure of a TS
complete Virtualization Environment instance has occurred.
The Virtual Machine Management shall issue a diagnostics information when a failure of a TS
complete VE instance has been overcome.
The Virtual Machine Management shall issue a diagnostics information when a failure of all TS
VE instances has occurred.
The Virtual Machine Management shall issue a diagnostics information when a failure of all TS
VE instances has been overcome.
Page 159 of 171 25/07/2025

FP2R20ATO

ID Source
CEME -DIAG-8 gy

SPT2CE-1496 -
Individual HW failure
within one physical
Computing Element

CEME -DIAG9 gy

SPT2CE-1496 -
Individual HW failure
within one physical
Computing Element

CEME -DIAG-10 gy

SPT2CE-1490 - Total
HW failure of one
complete physical
computing element

CEME -DIAG-11 g

SPT2CE-1490 - Total
HW failure of one
complete physical
computing element

CEME -DIAG-12 g

SPT2CE-1492 -
Disaster scenario -
failure of all computing
elements

FP2-WP26-D-DBN-003-06

Allocation

VE

VE

VE

VE

VE

Contract No. HE — 101102001

Requirement

The Virtual Machine Management shall issue a diagnostics information when an individual
HW failure within one physical Computing Element has occurred.

The Virtual Machine Management shall issue a diagnostics information when an individual
HW failure within one physical Computing Element has been overcome.

The Virtual Machine Management shall issue a diagnostics information when a total HW
failure of one complete physical computing element has occurred.

The Virtual Machine Management shall issue a diagnostics information when a total HW
failure of one complete physical computing element has been overcome.

The Virtual Machine Management shall issue a diagnostics information when a failure of all

computing elements has occurred.

Page 160 of 171

(=

=urope's

Scope

TS

TS

TS

TS

25/07/2025

FP2R2DATO

ID Source
CEME -DIAG-13 gy

SPT2CE-1492 -
Disaster scenario -
failure of all computing
elements

CEME -DIAG-14 gy

SPT2CE-1501 -
Failure of one external
communication
channel regarding 10

CEME -DIAG-15 gy

SPT2CE-1501 -
Failure of one external
communication
channel regarding 10

CEME -DIAG-16 g

SPT2CE-1499 -
Failure of all external
communication
channels regarding 10

CEME -DIAG-17 gy

SPT2CE-1499 -
Failure of all external
communication
channels regarding 10

FP2-WP26-D-DBN-003-06

Allocation

VE

VE

VE

VE

VE

Contract No. HE — 101102001 5‘

=urope's

Requirement

The Virtual Machine Management shall issue a diagnostics information when a failure of all
computing elements has been overcome.

Scope

TS

The Virtual Machine Management shall issue a diagnostics information when a failure of one = TS

external communication channel regarding 10 has occurred.

The Virtual Machine Management shall issue a diagnostics information when a failure of one TS

external communication channel regarding 10 has been overcome.

The Virtual Machine Management shall issue a diagnostics information when a failure of all TS
external communication channels regarding 10 has occurred.
The Virtual Machine Management shall issue a diagnostics information when a failure of all TS
external communication channels regarding 10 has been overcome.

Page 161 of 171 25/07/2025

FP2R20ATO

D.3 REQUIREMENTS ON ORCH

Contract No. HE — 101102001 6‘

=urope's

For the source references, please refer to [15].

ID

ORCH-1

ORCH-2

ORCH-3

ORCH-4

ORCH-5

ORCH-6

ORCH-7

Source

SPT2CE-1421

SPT2CE-1428

SPT2CE-1428

SPT2CE-1428

SPT2CE-1428

SPT2CE-1431
SPT2CE-1448

SPT2CE-1439
SPT2CE-1602

FP2-WP26-D-DBN-003-06

Allocation
(needed?)

VE

VE

VE

VE

VE

VE

VE

Requirement

ORCH shall offer a function through which the Platform Management can verify that the
deployment of the Virtualization Environment has been performed correctly by the

Virtual Machine Management.

Note: This requirement goes beyond those strictly derived from SPT2CE-1421.

Scope

TS

ORCH shall offer a function through which the Platform Management can verify whethera | TS
Virtualisation Environment of the designated Physical Computing Elements complies
with the requirements as per the certified FS Deployment Rules of a Functional System to

be deployed.

ORCH shall offer a function through which the Platform Management can confirm whether = TS
sufficient resources can be allocated on the designated Physical Computing Element(s)

in accordance with the FS.

ORCH shall offer a function through which the Platform Management can create Virtual

Computing Element(s) according to the FS Deployment Rules of a Functional System to

be deployed.

ORCH shall offer a function through which the Platform Management can verify that the

TS

TS

correct Virtual Computing Element(s) have been created and that they are ready for FS

Compartment deployment.

ORCH shall offer a function through which the Platform Management can verify the correct ' TS

mapping of FS Compartment and Virtual Computing Element.

ORCH shall offer a function through which the Platform Management can request to
release Virtual Computing Elements.

Page 162 of 171

TS

25/07/2025

im Contract No. HE — 101102001 6

=urope's ~ail
Source Allocation Requirement
(needed?)
ORCH-8 SPT2CE-1448 VE ORCH shall offer a function through which the Platform Management can trigger a backup | TS
SPT2CE-1446 of the state of a FS compartment.

SPT2CE-1602
SPT2CE-1458

ORCH-9 SPT2CE-1456 VE ORCH shall offer a function through which the Platform Management can request to TS
SPT2CE-1458 uninstall a Functional System Compartment.
ORCH-10 VE ORCH shall offer a function through which the Platform Management can setup the TS

functions needed within a Virtual Computing Element for the subsequent usage of the
[1-UPDATE interface to manage Functional System installations, updates, etc.

FP2-WP26-D-DBN-003-06 Page 163 of 171 25/07/2025

m Contract No. HE — 101102001 e

=urope's ~all
D.4 REQUIREMENTS ON MGMT-DIAG
For the source references, please refer to [15].
ID Source Allocation = Requirement Scope
(needed?)
MGMT-DIAG-1 MPM It shall be possible to configure the FS Diagnostics Server w.r.t. which diagnostics F
information types are provided to the Platform Management.
MGMT-DIAG-2 MPM Diagnostics information provided by the FS Diagnostics Server shall contain time stamps. F
MGMT-DIAG-3 MPM Diagnostics information exchanged shall be based on standardized naming convention for F
entities (CPUs, etc.).
MGMT-DIAG-4 | SpT2CE-1483 - MPM The FS Diagnostics Server shall issue a diagnostics information when an FS Compartment F
Total SW Failure of has failed.
one FS
Compartment
MGMT-DIAG-5 gpT2CE-1501 - MPM The FS Diagnostics Server shall issue a diagnostics information when a failure of one F
Failure of one external communication channel regarding 10 has occurred.
external
communication
channel regarding |10
MGMT-DIAG-6 | SpT2CE-1501 - MPM The FS Diagnostics Server shall issue a diagnostics information when a failure of one F
Failure of one external communication channel regarding 10 has been overcome.

external
communication
channel regarding 10

FP2-WP26-D-DBN-003-06 Page 164 of 171 25/07/2025

FP2R20ATO

Source

Allocation

(needed?)

Contract No. HE — 101102001 6

=urope's ~ail

Requirement

MGMT-DIAG-7 SpT2CE-1499 - MPM The FS Diagnostics Server shall issue a diagnostics information when a failure of all F
Failure of all external external communication channels regarding 10 has occurred.
communication
channels regarding
10
MGMT-DIAG-8 | SpT2CE-1499 - MPM The FS Diagnostics Server shall issue a diagnostics information when a failure of all F
Failure of all external external communication channels regarding 10 has been overcome.
communication
channels regarding
10
FP2-WP26-D-DBN-003-06 Page 165 of 171 25/07/2025

@EDA TO Contract No. HE — 101102001 e‘

=urope's
D.5 REQUIREMENTS ON FS-UPDATE
For the source references, please refer to [15].

ID Source Allocation Requirement Scope ‘

FS-UPDATE-1 SPT2CE-1431 MPM FS-UPDATE shall offer a function through which the Platform Management F
SPT2CE-1448 can request to install software / configurations within FS Compartments
SPT2CE-1446 onto a corresponding Virtual Computing Element as per the FS Deployment
SPT2CE-1602 Rules of the Functional System to be deployed.
SPT2CE-1456
SPT2CE-1458

FS-UPDATE-2 SPT2CE-1431 MPM FS-UPDATE shall offer a function through which the Platform Management F
SPT2CE-1456 can request to start software / configuration within a Functional System
SPT2CE-1458 Compartment.

FS-UPDATE-3 SPT2CE-1439 MPM FS-UPDATE shall offer a function through which the Platform Managementor F
SPT2CE-1446 potentially Shared Services can request to stop software / configuration
SPT2CE-1456 within a Functional System Compartment.
SPT2CE-1602
SPT2CE-1458

FS-UPDATE-4 SPT2CE-1448 MPM FS-UPDATE shall offer a function through which the Platform Management or = F
SPT2CE-1446 potentially Shared Services can test if software / configuration within a
SPT2CE-1602 Functional System Compartment is up and running.
SPT2CE-1458

FS-UPDATE-5 SPT2CE-1456 MPM FS-UPDATE shall offer a function through which the Platform Managementor F

potentially Shared Services can check the version of a software /
configuration within a Functional System Compartment.

FP2-WP26-D-DBN-003-06 Page 166 of 171 25/07/2025

m Contract No. HE — 101102001 6‘

=urope's

APPENDIX E COLLECTED OPEN POINTS FOR THE MPC

The following lists represents the collected opens for the Modular Platform Concept. They are meant for future work, e.g., in the ERJU SP CE domain,
other domain, or future ERJU IP projects.

ID Source Open

Chapter

Open-001 6.3 What kind of HW architecture aspects will be “bottle necks” in parallel usage by independent FS compartments running
aggregated on same physical computing element?

o Memory bandwidth?
o Network bandwidth?

How can this aspects be handled / defined FS compartment wise?

Open-002 6.5 Architecture: how to handle the message-based interface of the NHA (see chapter 6.7) to FS Compartments above — is this
interface a part of 13?

Open-003 6.6 The details of the requirements towards the hardware (as e.g. hardware architecture, cores, performance, communication, MTBF,
virtualization extension, ...) must be defined.

Open-004 6.7.1.1 What is the criteria for unique CPU identification? MAC address? TPM content?

Open-005 6.7.1.2 How to solve the relationship of used CPU cores (used by the FS compartment within the VCE) and the information which shall be
provided by the native running software as NHA?

Open-006 6.7.1.4 The details regarding sensor information provided by NHA in context of temperature must be clarified.

Open-007 6.7.1.5 The details regarding sensor information provided by NHA in context of voltage must be clarified.

Open-008 6.7.1.6 It must be clarified, if the required information from the physical hardware can be provided via standardized interface 12 or if the

NHA functionality must be adapted for different HW variants.

Open-009 6.7.1.6 The responsibility and technical handling (installation/update) of such a NHA software must be clarified.

FP2-WP26-D-DBN-003-06 Page 167 of 171 25/07/2025

m Contract No. HE — 101102001 6‘

=urope's

ID Source Open

Chapter

Open-010 | 6.7.2 The safe handling of safety critical software in context of a non-safe VE with standard orchestration tools must be clarified, as e.g.
to avoid unallowed installation and starting of FS duplicates

Open-011 | 5.4 For the MPC Architecture, a combined modularization architecture proposal showing how the deeper levels of FS (e.g.,
compartments, RTE, Functional Applications, etc.) interact with the interfaces introduced in the service architecture, as well as
with the Platform Management and/or Shared Services.

Open-012 6.8 Overall certification of the secure device needs to be clarified.

Open-013 | 6.8 The architecture for access to the TPM of the physical hardware must be clarified in context of
- Access by several FS compartments provided by different suppliers
- functionality secure boot
- certification for IE 62443 SL3.

Rationale: Access to physical hardware is not guaranteed for the IT-security mechanism running within a VCE.

Open-014 | 6.94 The overall architecture for the update of FS must be clarified.

Which dependencies in context of “FS consists of several FS compartments” are handled on side of the Shared Services and on
side of the Platform Management?

Open-015 6.95 The safety related overall architecture for georedundant FS with safe handling of split-brain problem is not yet defined.

Open-016 | 6.10 Scalable handling of CPU resources: How to handle the scalable usage of CPU resources (cores, memory, network cards,) for
flexible usage of independent FS compartments running on same PCE.

Open-017 | 6.11 The architectural details regarding “needed diagnosis data to do a root cause analysis and initiate automated repair activities” has
to be clarified.

Which data is relevant for Platform Management? Is a standardization of this senseful and possible or not?

FP2-WP26-D-DBN-003-06 Page 168 of 171 25/07/2025

m Contract No. HE — 101102001 6‘

=urope's

ID Source Open

Chapter
Open-018 | 6.11.5 Architecture for network diagnosis:

o Which architecture element is responsible for network diagnosis?

¢ Which architecture element is responsible to identify the root cause in case of network communication failures as e.g.
regarding the FS internal communication between FS compartments?

¢ Does this architecture element provide 11 Diagnosis to the Shared Services?

Open-019 | 6.11.4 Architecture for network diagnosis: which architecture element is responsible to identify the root cause in case of network
communication failures as e.g. regarding the FS internal communication between FS compartments?

Does this architecture element provide 11 Diagnosis to the Shared Services?

Open-020 | 6.12.1 Overall architecture in context of installation and update needs to be defined.

e How to bring the individual FS Compartments onto the new VE instance on a new HW?

How to update FS Compartment versions?

What are the dependencies between Shared Services for Update and Platform Management?

How to differentiate between update of non-safe parts and safety related parts?

How to handle the NHA software in context of installation and update?

Open-021 6.13 An automated installation of safety critical FS compartments by a basic integrity Platform Management must be evaluated from
view of safety.

The FS system keeps running as 2002 and ensures a safe synchronization of the newly started FS compartment. But duplication
of safety related FS compartments has the potential to lead to the split-brain problem in context of a duplication of more than one
FS compartment.

Open-022 | 6.13.1 What exactly is necessary in context hardening of the VE? What kind of VE functionalities must be deactivated or even removed to
ensure that the handling of rail systems running on VE is possible in way as needed (efficient handling and available running FS)?

FP2-WP26-D-DBN-003-06 Page 169 of 171 25/07/2025

im Contract No. HE — 101102001 é

=urope's ~ail

Source

Chapter

Open-023 6.13.1 Is a kind of “generic” testing possible for performance and runtime behaviour of a new VE version to avoid the need for integration
of each individual FS compartment version with new VE Version?

Table 11: Collected MPC Opens

FP2-WP26-D-DBN-003-06 Page 170 of 171 25/07/2025

m Contract No. HE — 101102001 5‘

=urope's

APPENDIX F MPC GLOSSARY

Abbrevia | Context Definition

tion Chapter
Application-Level Platform = ALPI 7 Application-Level Platform Independence is achieved through the combination of the Runtime Layer
Independence and the Safety Layer providing all necessary safety-related and non-safety-related interfaces and

resources for fulfilling an application’s functions. This includes diagnosis, logging, and monitoring. In
addition, also the SRACs imposed on the application by the underlying platform must be fulfilled, ideally
standardized.

Compartment Execution & | CEME 5 The CEME is following the definition of CEE (see chapter 3.7.2) and adds the management for PCE,
Management Environment VE and VCE.

Compatible Platform CPI 3.1 An implementation of the Modular Platform Concept (MPC) as presented in this deliverable that is able
Implementation to run Functional Systems.

Hardware-Level Platform HLPI 6 Hardware-Level Platform Independence is achieved through the combination of the Hardware Layer
Independence and the Virtualisation Layer providing all necessary interfaces to aggregate multiple Functional Systems

with potentially different safety integrity levels on the same physical hardware.

Modular Platform Concept MPC 3 A full concept showing how develop, deploy and operate railway applications in a modular way on the
trackside, data centres or on-board a train.

Native Hardware Access NHA 6 The NHA enables access to hardware parameters and data from FS Compartments.
Platform Management PM 5 Platform Management manages CEME and FS Compartments while providing interfaces to the outside.
Shared Services n/a 3 The Shared Services represent a collection of overarching services (e.g., update and configuration)

defined by the System Pillar TCCS domain.

Virtual Machine VMM 8 Virtual Machine Management refers to the software and processes used to create, monitor, and
Management manage virtual machines.

Table 12: MPC Glossary

FP2-WP26-D-DBN-003-06 Page 171 of 171 25/07/2025

	Acknowledgements
	Report Contributors
	Executive Summary
	Abbreviations and Acronyms
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Scope
	1.2 Document Structure
	1.3 Limitations

	2 Development Methodology
	2.1 Deliverable Objectives
	2.2 Process Overview
	2.3 Existing and Relevant Documents
	2.4 Methodology For Deliverable Development

	3 Modular Platforms Concept (MPC)
	3.1 Purpose
	3.2 Scope
	3.3 Stakeholders
	3.4 Goals & Non-Goals
	3.5 Assumptions
	3.6 Known Issues & Limitations
	3.7 Alignment with ERJU System Pillar activities
	3.7.1 ERJU SP CE domain: RIS
	3.7.2 ERJU SP CE domain: Glossary
	3.7.3 ERJU SP CE domain: OAS
	3.7.4 ERJU SP TCCS domain
	3.7.5 ERJU SP PRAMS domain
	3.7.6 ERJU SP Cyber Security domain

	3.8 PRAMSS
	3.8.1 Safety
	3.8.2 Security
	3.8.2.1 Secure Component Specification
	3.8.2.2 Secure Communication Specification
	3.8.2.3 Shared Security Services

	3.8.3 PRAM

	3.9 User Stories
	3.10 Operational Context and Operational Scenarios
	3.11 Intended Usage Scenarios
	3.12 Platform Environment Examples

	4 Modular Platforms Requirements
	5 Modular Platforms Architecture
	5.1 Modularization Architecture
	5.1.1 HLPI Modularization Architecture
	5.1.2 ALPI Modularization Architecture

	5.2 Service Architecture
	5.2.1 High Level Service Architecture
	5.2.2 CEME and AEE Service Architecture

	5.3 Additional Assumptions
	5.4 Conclusions

	6 Hardware-Level Platform Independence (HLPI)
	6.1 Introducton
	6.2 Assumptions
	6.2.1 FS without direct I/O interfaces
	6.2.2 FS internal communication
	6.2.3 FS time behavior
	6.2.4 VE as non-safe software without safety relevance
	6.2.5 Standardization Update Process for FS Compartments

	6.3 Resource PartiTIoning for FS Compartments
	6.4 FS Compartment Configuration of the VE
	6.4.1 Modularity and independency of VE Config for FS Compartments
	6.4.2 Compatibility at VE interface

	6.5 Interface I3 and VE Architecture
	6.5.1 Hardware Independence
	6.5.2 Container
	6.5.3 Hypervisor
	6.5.4 Hypervisor and Container
	6.5.5 Summary
	6.5.5.1 Trackside use case
	6.5.5.2 On-board use case

	6.6 Interface I2 and HW Architecture
	6.7 Safety
	6.7.1 HW related information for SE
	6.7.1.1 Distribution of up to SIL4 FS Comp on different CPUs
	6.7.1.2 Core Usage Information
	6.7.1.3 Independent clock source for the creation of a safe monotonic time
	6.7.1.4 CPU temperature
	6.7.1.5 Voltage
	6.7.1.6 Summary

	6.7.2 Safe handling of Software

	6.8 Security
	6.8.1 ERJU Security within the FS Compartment
	6.8.2 ERJU Security inside of the CEE
	6.8.3 ERJU Security in own VCE as “Soft Crypto Box”
	6.8.4 Conclusion

	6.9 Availability of Functional Systems
	6.9.1 FS Runtime behavior, reaction time and inter-communication
	6.9.2 Individual failures in hardware or software of the platform
	6.9.3 Individual failures in communication
	6.9.4 Availability in context of SW maintenance
	6.9.5 Geographical redundancy

	6.10 Scalability
	6.11 Diagnosis
	6.11.1 Diagnosis of the Functional Application (FA)
	6.11.2 Diagnosis of the FS
	6.11.3 Diagnosis of the VE
	6.11.4 Diagnosis of the COTS Hardware
	6.11.5 Diagnosis of the Network

	6.12 Maintenance
	6.12.1 System Maintenance

	6.13 Automated repairs
	6.13.1 Lifecycle management for the VE
	6.13.2 Spare handling of COTS Hardware

	6.14 Public Cloud
	6.14.1 Safety architecture
	6.14.2 Security architecture
	6.14.3 Performance, reaction time and availability
	6.14.4 Integration and maintenance
	6.14.5 Business Case
	6.14.6 Responsibility

	6.15 Certification
	6.16 Conclusion and Outlook

	7 Application-Level Platform Independence (ALPI)
	7.1 Introduction
	7.2 Cornerstones of ALPI
	7.2.1 Main principles followed for the ALPI’s definition
	7.2.1.1 Functional Interface goals

	7.2.2 Previous Work as discussed in D26.1

	7.3 Structure Overview
	7.3.1 Common Basic Assumptions
	7.3.1.1 Architectural Assumptions
	7.3.1.2 Platform Components
	7.3.1.3 Platform Services
	7.3.1.4 Functionality Implementation Assumptions
	7.3.1.5 Platform Behaviour

	7.3.2 Application-Level Platform Components
	7.3.2.1 Generic Functional Application
	7.3.2.1.1 Business Logic software – ALPI services

	7.3.2.2 Configuration
	7.3.2.3 Certification Artefacts
	7.3.2.4 Platform Independence API - ALPI Interface

	7.3.3 Set of Deliverables for Integrator

	7.4 ALPI Details
	7.4.1 Assumptions
	7.4.2 ALPI architecture and layers
	7.4.3 Generic Functional Application
	7.4.4 Interface I4 and RTE
	7.4.5 Interface I5 and SL
	7.4.6 Implementation models
	7.4.6.1 Functional Applications, Tasks and Deployment Configuration
	7.4.6.2 Messaging
	7.4.6.3 Task and Thread Scheduling
	7.4.6.4 Time
	7.4.6.4.1 Timestamps and Task replication
	7.4.6.4.2 Timestamps and Messages

	7.4.6.5 Gateway Concept
	7.4.6.6 Fault, error and failure handling and recovery
	7.4.6.6.1 Fault Detection and Response
	7.4.6.6.2 Error Detection and Response
	7.4.6.6.3 Failure Response

	7.4.6.7 Communication Model

	7.4.7 Certification
	7.4.8 Safety
	7.4.9 Security
	7.4.10 Diagnosis
	7.4.10.1 Diagnosis of the FA

	7.4.11 Maintenance

	7.5 Collection of Topics For Future Study
	7.6 Conclusion and Outlook
	7.6.1 Open points
	7.6.1.1 RTE Single/multi provider
	7.6.1.2 Consistent safety

	8 Management, Diagnostics and Security related Interfaces
	8.1 Overview on the interfaces
	8.2 General Assumptions on the interfaces
	8.3 Requirements on the interfaces
	8.4 Conclusions and Next Steps

	9 Conclusions
	References
	Appendix A MPC Requirements
	Appendix B HLPI Requirements
	Appendix C ALPI Requirements
	Appendix D Management, Diagnostics and Security related Interface Requirements
	D.1 Common Requirements
	D.2 Requirements on CEME-DIAG
	D.3 Requirements on ORCH
	D.4 Requirements on MGMT-DIAG
	D.5 Requirements on FS-UPDATE

	Appendix E Collected Open Points for the MPC
	Appendix F MPC Glossary

