

FP3 IAM4RAIL - GA 101101966 Interne

Deliverable D 18.1
Common Framework Orientations

Reviewed: (yes)

This project has received funding from the European Union’s Horizon Europe

research and innovation programme under Grant Agreement No 101101966.

Project acronym: FP3 - IAM4RAIL
Starting date: 01/12/2022

Duration (in months): 48

Call (part) identifier: HORIZON-ER-JU-2022-01
Grant agreement no: 101101966

Due date of deliverable: Month 12
Actual submission date: 08-02-2024

Responsible/Author: JOLY / SNCF

Dissemination level: PU
Status: Issued

 FP3 IAM4RAIL - GA 101101966

Document history

Revision Date Description

0.1 9/12/2023 First issue
0.3 15/01/2024 Final version after TMT and SC approval

0.4 07/02/2024 Version after quality check
1.0 08/02/2024 Final version submitted to ERJU

 FP3 IAM4RAIL - GA 101101966

COVERING DOCUMENT

Report contributors

Name
Beneficiary Short

Name
Details of contribution

Louis-Romain JOLY SNCF Initial Draft and refinement
Clara CUSSAGUET SNCF Review

Vincenzo MANNO FSI Review

PART A – MIDLLEWARE SELECTION

Report contributors

Name
Beneficiary Short

Name
Details of contribution

Björn Kahl SNCF Initial Draft

Louis-Romain JOLY SNCF
Workpackage internal review, answers to
reviewer comments

Clara CUSSAGUET SNCF Workpackage internal review

Luca TISENI FSI Workpackage internal review
Vincenzo MANNO FSI Workpackage internal review

PART B – ADVANCED MODULARITY

Report contributors

Name Beneficiary Short
Name

Details of contribution

Louis-Romain JOLY SNCF Initial Draft

Clara CUSSAGUET SNCF Review

Vincenzo MANNO FSI Review

Luca TISENI FSI Section editing and review

Emilio SANCHEZ CEIT Section editing and review

Björn KAHL SNCF Section editing and review

PART C – SAFETY ASSESSMENT

Report contributors

Name Beneficiary Short
Name

Details of contribution

Louis-Romain JOLY SNCF Initial Draft

Rachel HEGEMANN DB Updated Sections 6 and Executive Summary

Maria VRSALOVIC DB Supply of the original safety plan template
and review

Holger SCHLINGLOFF SNCF Formulations in 6.3

Clara CUSSAGUET SNCF Workpackage internal review

Vincenzo MANNO FSI Workpackage internal review

Luca TISENI FSI Workpackage internal review

Marcos CONCEICAO UIC Review

 FP3 IAM4RAIL - GA 101101966

Juan BENAYAS ARROYO THALES Internal review

PART D – VISION OF ROBOTICS” IMPACT

Report contributors

Name
Beneficiary Short

Name
Details of contribution

Louis-Romain JOLY SNCF Initial Draft
Vincenzo Manno FSI Workpackage internal review

Luca TISENI FSI Workpackage internal review
Michele Pacini FSI Workpackage internal review

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit

for any particular purpose. The content of this document reflects only the author’s view – the Joint Undertaking is not

responsible for any use that may be made of the information it contains. The users use the information at their sole risk
and liability.

The content of this Deliverable does not reflect the official opinion of the Europe’s Rail Joint Undertaking (EU-Rail

JU). Responsibility for the information and views expressed in the therein lies entirely with the author(s).

 FP3 IAM4RAIL - GA 101101966

Table of Contents

1 Executive Summary ..9

2 Abbreviations and acronyms ... 11

3 Background .. 11

4 Objective/Aim .. 12

5 Work-package roadmap .. 14

6 Conclusion .. 17

6.1 Middleware selection ... 17

6.2 Advanced modularity .. 17

6.3 Safety assessment... 18

6.4 Vision of robotics impacts on railway maintenance... 19

PART A – MIDDLEWARE SELECTION ... 20

1 Executive Summary ... 21

2 Abbreviations and acronyms ... 22

3 Objective/Aim .. 27

4 Methodology ... 28

4.1 Survey of robotic software frameworks ... 28

4.1.1 Common Middleware vs. Software Development Framework 28

4.1.2 Initial data selection.. 28

4.1.3 Preliminary analysis and filtering.. 30

4.1.4 Candidate frameworks detailed analysis .. 33

4.2 Common requirement criteria .. 38

4.2.1 Final set of technical criteria ... 41

4.2.2 Final set of “social” criteria ... 42

4.3 Selection of the common middleware framework... 42

4.3.1 Justification for selecting ROS2 .. 45

5 Conclusions .. 47

6 References ... 48

PART B – ADAVANCED MODULARITY ... 51

1 Executive Summary ... 52

2 Abbreviations and acronyms ... 54

3 Objective/Aim .. 56

4 Methodology ... 57

 FP3 IAM4RAIL - GA 101101966

5 Clarification of the concept of advanced modularity .. 58

5.1 Quality ... 58

5.1.1 from "we can talk" to "we understand each other" ... 58

5.1.2 To an automated matching process ... 59

5.1.3 Configuration management .. 59

5.1.4 Complexity management .. 59

5.2 Pure productivity .. 59

5.2.1 To automated links ... 59

5.2.2 Automated code generation... 59

5.2.3 More visual tools .. 60

5.2.4 Modularity for safety demonstration ... 60

5.2.5 Compatibility mapping.. 60

5.2.6 Separation of concern... 60

5.3 Support for the business model ... 61

5.3.1 Remuneration mechanism ... 61

5.3.2 Propagation of licenses ... 61

5.4 Live Support .. 61

5.4.1 Online monitoring ... 61

6 Technical elements required for our advanced modularity .. 62

6.1 Data structure for system component properties ... 63

6.2 Component properties database .. 64

6.3 Automatic property-extractor .. 64

6.4 Component properties visualizer ... 65

6.5 Data structure for the hard- and software architecture and data flow model 66

6.6 Tool to design this model ... 68

6.7 Tool that generates the robot software distribution from a model 68

6.8 Automatic code generator .. 69

6.9 Tool for checking incompatibilities and missing information in a model 70

6.10 Quality check .. 71

6.11 Visual launching/stopping tool ... 73

7 Impacts for developers .. 74

8 Conclusions .. 75

9 References ... 78

 FP3 IAM4RAIL - GA 101101966

PART C – SAFETY ASSESSMENT ... 79

1 Executive Summary ... 80

2 Abbreviations and Acronyms ... 81

3 Objective/Aim .. 82

4 Methodology ... 84

5 Overview of the Safety Plan Content .. 84

5.1 Purpose of the Safety Plan.. 84

5.2 System Definition .. 85

5.3 Safety Proof Concept .. 87

5.3.1 Basic Machine Safety .. 89

5.3.2 Information Safety .. 90

5.3.3 Movement Safety ... 91

5.3.4 Inspection Safety .. 92

5.3.5 Intervention Safety .. 95

5.4 Safety Assessment Report .. 98

6 Towards a Unified Safety Process for Railway Maintenance Robots 99

7 Conclusions .. 99

8 References ... 102

PART D – VISION OF ROBOTICS’ IMPACT .. 103

1 Executive Summary ... 104

2 Abbreviations and acronyms ... 105

3 Objective/Aim .. 105

4 Investigated methodologies .. 106

4.1 Types of approach .. 106

4.1.1 Bottom-up Approach .. 107

4.1.2 Top-down extrapolation approach ... 108

Some bodies, such as the International Federation of Robotics, offer annual reports providing
general information and trends that could also be exploited. ... 108

4.1.3 Top-down analytical approach ... 109

4.1.4 Top-down fictional approach.. 114

5 Selected approach ... 115

6 Conclusion .. 117

7 References ... 117

 FP3 IAM4RAIL - GA 101101966

8 Appendices (all parts included) ... 118

List of Figures

Figure 1 Flow chart for identification of candidate frameworks for comparative study. 29
Figure 2 Family inheritance chart for surveyed software frameworks. ... 30
Figure 3 - Principal working steps ... 57
Figure 4 - Tools and their effect .. 62
Figure 5 - Example of the input-output check between modules .. 71
Figure 6 - Positioning of the Advanced Modularity Tools .. 75
Figure 7 - Categorization of Relevant Safety Standards ... 89
Figure 8 - Human vs Machine Responsibility .. 94
Figure 9 - Types of approach .. 107
Figure 10 - Bottom-up approach .. 108
Figure 11 - Diagram of the top-down analytical approach... 110
Figure 12 - Impact diagram ... 114

List of Tables

Table 1 All 34 surveyed robotic software frameworks and their maintenance status 32
Table 2 Guiding question when defining selection criteria with answers. 40
Table 3 importance scale for selection criteria. ... 42
Table 4 - Selection criteria organized into a scorecard to rank different frameworks. 44
Table 5 - Categorization of the Project Demonstrators ... 97
Table 6 - Industrial robots deployment in the automotive industry .. 109

FP3 IAM4RAIL - GA 101101966 9 | 118 Interne

1 Executive Summary

Objective:

FP3 - IAM4RAIL WP18 was structured around 2 timeframes. In the short-term view, maintenance
robots are being developed. Those robots meet business needs expressed by partners. The aims
are different: some want to accompany the growth of their transport offer without having to
increase the surface area of their maintenance facilities, others want to acquire new resources to
accelerate an equipment deployment program, and still others want to reduce their costs or
improve the quality of the information they collect.
To ensure that developments continue beyond these 4 robots, the work package aims to structure
a railway robotics ecosystem in the medium-term view. This ecosystem supports the technical
policy of robot modularity, which is essential for the expansion of robotics in railway maintenance.
In this first year of work, we set out to determine the main guidelines that will govern the
development of common tools and methodologies for our ecosystem. The purpose of this
document is to set out these orientations.

Rather than presenting all our orientations in a single document, we have chosen to draw up 4
documents that can be read independently:

• Part A : justification of the choice of a common middleware;

• Part B : clarification of the concept of advanced modularity and proposals for the tools

needed to implement it;

• Part C : principles adopted for a safety demonstration methodology when robots are used

in a railway maintenance operation;

• Part D : a vision of the benefits of robotics for railway asset management.

Conclusions:
Concerning the common middleware, the project selects the ROS2 software development.
Although technologically more advanced options exist, ROS2 provides the best balance between
technological capabilities, wide-spread support, especially with hardware vendors, and a fast,
vibrant global developer community, which makes its long-term survival highly likely. Besides,
ROS2 or its predecessor ROS is already in use at multiple project partners for prototyping and
development, thus minimizing on boarding efforts.
ROS2’s major drawback of lack of structure development tools is mitigated by longstanding and
ongoing work from project partners to bring modern, model-driven development to the ROS
world.

To guarantee an advanced modularity the project propose to develop a set of tools which will
benefit from work previously carried out by Fraunhofer IPA. This minimizes our development
effort while maximizing our chances of success. Our development efforts will focus on 7
fundamental tools (eg. data structures for component and system description, related database,
plugin for properties visualization, properties extractor from C++ or Python code…). For 2 tools

FP3 IAM4RAIL - GA 101101966 10 | 118 Interne

(automatic documentation generation and code quality check), we offer to test existing solutions
and make recommendations for use and/or further development. The market offers solutions, and
we don't know enough about their limits to justify further development. For one last tool (robot’s
software distribution from its model), we will simply draw up recommendations for future
developments. Our resources do not allow us to address this theme in parallel with the others,
and it does not appear to be a priority.
The corpus of tools that will be available at the end of the project will provide a solid, concentrated
core of Model Design Engineering tools with a strong impact on product quality and development
productivity. Beyond the scope of the project, efforts will have to be continued to increase the
perimeter of certain tools (moving the system's data structure from the "logical" scale to the
"physical" scale, then to the mechanical scale) or by undertaking work on tools that are not yet
covered (software distribution tool).
4 tools will export constraints to developers. We have endeavoured to limit this number. The
precise list of constraints will be known in January 2024, following the completion of a study
conducted at the University of Stuttgart with the help of students.

The Safety Plan is the document that summarizes all the elements to be produced for the safety
demonstration. It is divided into 4 chapters (Purpose of the Safety Plan, System Definition, Safety
Proof Concept, Safety Assessment Report), which represent the basic pillars of the safety case for
the process change of maintenance measures in the rail system.
The first section “Purpose of the Safey Plan” indicates that the safety plan is a covering document
which organizes and references the most important documents in the safety demonstration. The
second section “System Definition” allows the specific project to be broken down into its most
important components and ensures that all aspects of the process change have been considered
for a proper safety verification. The third section “Safety Proof Concept” structures the path that
is to be followed to provide proof of safe operation. The path has been organized around 5
categories each one integrating the level of autonomy. All the elements mentioned above lead to
the forth and final section, a central safety assessment report.
This deliverable is the fruit of initial work that needs to be enriched. We will be working on two
types of improvements over the coming months. We will be developing or continuing to develop
templates and guidelines to help write the safety plan sections themselves. The second axis will
be the development of a Unified Safety Process for Railway Maintenance Robots. The work done
so far describes what needs to be delivered, but not how best to organize the work to deliver it.

To build a vision of the robotics impact on railway maintenance, the adopted approach is a mix
between a high perspective analytical approach and a high perspective fictional approach. The
analytical approach is based on a breakdown of maintenance into more basic processes. For each
of the elementary processes, a short list of relevant indicators (in the context of the introduction
of robotics) is proposed. Reference levels are determined. The last step consists of evaluating the
evolution of these indicators on a scale of approximately 5 years.
The fictional approach is inspired by Red Team Defense offered by Paris Sciences & Lettres to the
French armies. They propose, over a longer time horizon, futures for which the probability of
occurrence is not the key point. It is the reactions to be implemented in the face of these new
situations that have important value. Creating a collective imagination in addition to more

FP3 IAM4RAIL - GA 101101966 11 | 118 Interne

traditional commercial relationships can also be a strong glue in a new-born ecosystem.
The total duration of the selected approach is 18 months, based on 4 stages for the analytical
approach and on an iterative work of 6 to 9 months for the fictional part.

2 Abbreviations and acronyms

Abbreviation Definition

EU MAWP Europe’s Rail Joint Undertaking Multi-Annual Work Programme

ROS Robot Operating System

WP Work Package

3 Background

The present document constitutes part of the Deliverable D18.1 “Common Framework
Orientations” in the framework of the Flagship Project 3 – IAM4RAIL as described in the EU-RAIL
MAWP.

FP3 IAM4RAIL - GA 101101966 12 | 118 Interne

4 Objective/Aim

FP3 - IAM4RAIL WP18 was structured around 2 timeframes. In the short-term view, maintenance
robots are being developed. These robots cover in a matrix fashion the 2 fields of infrastructure
and rolling stock, and the 2 maintenance levels of inspection and intervention. Those robots meet
business needs expressed by partners. The aims are different: some want to accompany the
growth of their transport offer without having to increase the surface area of their maintenance
facilities, others want to acquire new resources to accelerate an equipment deployment program,
and still, others want to reduce their costs or improve the quality of the information they collect.
To ensure that developments continue beyond these 4 robots, which are far from covering all
relevant uses, the work package aims to structure a railway robotics ecosystem in the medium-
term view. This ecosystem supports the technical policy of robot modularity, which is essential for
the expansion of robotics in railway maintenance.
These 2 timeframes of work feed off each other. The components developed on the 4 robots will
be the first building blocks of our ecosystem. Similarly, the first ecosystem tools will facilitate the
development of the 4 robots.
In this first year of work, we set out to determine the main guidelines that will govern the
development of common tools and methodologies for our ecosystem. The purpose of this
document is to set out these orientations. As a preamble, we will come back to the general
philosophy that guided the structuring of this work package.

Rather than presenting all our orientations in a single document, we have chosen to draw up 4
documents that can be read independently.

The first document concerns the choice of a common middleware. It is an essential tool in
robotics. Creating a data bus that allows a very fluid flow of information, makes it possible to have
a set of unitary programs carry out complex tasks rather than a single large program. It is much
easier to make a unitary software context-independent. This independence of context means that
the code can be reused for a wide range of use cases. This document justifies the choice of
middleware made by the partners.

The second document concerns what we have called the overlay for advanced modularity. As
mentioned above, middleware is the cornerstone of modularity. They are so flexible that, in an
industrial context, this can run counter to the ratio of product quality to development time. We
therefore feel it is necessary to provide tools that place modularity at the expected level and speed
up the design phase. This document describes the sub-concepts of advanced modularity that we
wish to promote and proposes a list of tools capable of supporting them. This document also
indicates the constraints that will result from the use of these tools for developers.

The third document concerns the safety assessment. Here, too, the aim is to develop the
principles that have been adopted and to propose a suitable methodology at the end of the
project, even if some of the tools needed to implement it have not been developed yet. Once
again, the impact on development will be explained. Methodological developments will be carried
out in parallel with product developments. The aim is therefore to synchronize the 2 approaches

FP3 IAM4RAIL - GA 101101966 13 | 118 Interne

as closely as possible, to minimize the need to adapt products that may not conform to the
finalized methodology.

The fourth document looks at the contribution (vision of the impact) of robotics to railway asset
management. Rather than drawing up a detailed list of railway maintenance applications where
the use of robotics would make sense, we provide a macro-perspective of the values generated in
various scenarios.

FP3 IAM4RAIL - GA 101101966 14 | 118 Interne

5 Work-package roadmap

Our society is faced with considerable environmental challenges: climate change, increasing
rarefaction of raw materials, etc. Rail transport has several strengths to respond to this
unprecedented situation.
Maintenance is an important element of the rail system, and one on which safety is built. But
maintenance is a cost and unavailability factor. It must evolve to better support the railways'
values proposition.
Maintenance can be seen as a continuous cycle based on 3 pillars: monitoring, decision-making
and action. Monitoring consists of enquiring about the state of the system. Once this information
has been acquired, the next step is to decide what needs to be done to ensure that the equipment
being maintained meets the desired objectives. A part needs to be replaced, another needs to be
adjusted, and monitoring needs to be reinforced... Once the decision has been taken, it must be
implemented: this is the action.

Three of today's most popular technologies cover the first 2 pillars. IOT enables better (more often,
with more detailed information…) monitoring. AI and massive data processing enable us to make
better decisions or better guide decision-making. Better monitoring and decision making is good.
It can help keep components as close as possible to the limits, for example by applying a predictive
maintenance strategy. However, the weight of operations upstream and downstream of the
maintenance act, and the availability of installations, can be real obstacles to translate these
decisions into action.
Few technologies can cover the third pillar, that of action. Robotics is one of them. Although it can
cover the other two pillars (monitoring and decision-making), it is really on the action side that it
will have the greatest added value. For example, by enabling maintenance to be carried out
without the need for installation (maintenance pit or walkway), or by freeing up the workforces of
operators with key skills, robotics can help maintenance progress. At the same time, robotics can
improve working conditions for maintenance operators, making the jobs more attractive.

This is the macroscopic challenge of our work. But what kind of robotics do railways need?
Use cases are numerous and various: visual inspections, repair by metal cladding, cleaning,
stripping and anti-corrosion protection, parts installation or replacement...
The robots that can respond are different. Nevertheless, there may be a large commonality in the
components that make them up. If they are developed in silos: a robot, a development from a
blank page by a different player, a significant part of the developments will be devoted to subjects
already covered (in the previous development by other entities). A single player developing all
uses (an extreme example designed to highlight the consequences) will be able to take advantage
of the massification of components. But it will find itself in a de facto position of strength,
compared to other technology providers and end-users.
This massification of railway robot components therefore needs to be organized by the sector,
ideally on a European scale to exceed a critical size. This massification of rail robot components
must be carried out across rolling stock and infrastructure. It concerns software, but also hardware
(sensors, mobile bases, computation units, effectors, etc.).
Modular robots are what the rail sector needs.

FP3 IAM4RAIL - GA 101101966 15 | 118 Interne

Modular railway robots will only come into being through a platform policy. IAM4RAIL's WP18
aims to launch this policy. Two time horizons are being worked on: the short term and the medium
term.
In the short term, we need to develop and test the first modular robots that respond to business
needs. Parallel to the Technology Readiness Level, the Demand Readiness Level needs to be
advanced, to show what can be done, and to inspire future users.
A final component is essential. This is the Manufacturing Readiness Level. Tomorrow, we need to
have an operational technical and economic network ready to support the ramp-up of rail
maintenance robots. That's what we want to do in the medium term, to structure a European
railway robotics ecosystem.

Four modular robots and a laboratory prototype will be developed. Two robots will be used for
train maintenance, and two for infrastructure maintenance. Moreover, two robots are inspection
robots and two robots are intervention robots. The laboratory prototype will be used to develop
a fifth robot, an infrastructure repair robot, at a later stage.
The robots will be used for various use cases: to disinfect trains and small stations, to measure
track gauge, to inspect catenaries and tunnels, to inspect trains underbody and install objects
(ERTMS balise, axle counter…) on the track.

In the medium term, WP18 will build a first set of common tools to support the ecosystem and its
technical policy (platform of modules). The first of these tools will be a common middleware. Its
selection is the subject of a document within this deliverable. This middleware is a key element,
as it enables software modularity. It should be noted that we use the term middleware rather
loosely. The core functionality of middleware is to orchestrate data exchanges between other
programs. In robotics, other functionalities are systematically combined with basic software
modules. We could therefore speak of a development framework. As the term "framework" is not
very precise, as it is used in very different contexts, we have chosen to use the term "middleware",
even if it does not cover the entire technical scope underlying the choice.
We wrote that middleware was the key to modularity. It enables software to be interconnected
by organizing the data exchange. For use in industrial environments, today's middlewares are even
too permissive. In a caricature, we could say that they connect any program to any other. If basic
checks are carried out, for example on the type of data being exchanged (image, integer number,
float number, string, point cloud, GNSS measurement data, etc.), more detailed checks are
required to guarantee the quality of the programs chain. It is therefore necessary to guarantee the
correct interconnections between software modules in order to reduce development times and
increase assembly quality. Our aim is to offer tools based on model design engineering, but
without imposing the entire approach, so as not to impose too many constraints on developers.
All these components we're talking about must also be distributed. This is in the interests of those
who develop and offer these components, and those who wish to use them. A marketplace must
therefore be the right tool. It's this marketplace that will form the truly visible part of the
ecosystem we want to build. By building a marketplace prototype as part of this project, we will
be able to start discussing the business model that will make exchanges viable in the long term.
Finally, a very important element for our ecosystem is a common safety demonstration method.

FP3 IAM4RAIL - GA 101101966 16 | 118 Interne

Safety is one of the pillars of rail transport. In an industrialization project, a significant proportion
of resources can be devoted to safety demonstrations. The modularity we are promoting can be
used to shorten this phase and reduce its cost. This must be organized rigorously and
transparently, to build trust between all stakeholders.

Beyond ERJU's first call, other actions will be necessary to launch and then sustain the European
railway robotics ecosystem (integration of a more significant number of technology providers, and
setting up a governance structure...). Nevertheless, with IAM4RAIL WP18 we are helping to lay
solid foundations for the rest of the process.

The roadmap is presented graphically in Appendix A.

FP3 IAM4RAIL - GA 101101966 17 | 118 Interne

6 Conclusion

6.1 Middleware selection

The project selects the ROS2 software development framework as its common middleware.
Although technologically more advanced options exist, like the Japanese ORiON framework, the
European SmartSoft framework, or the FiWare framework, ROS2 provides the best balance
between technological capabilities, wide-spread support, especially with hardware vendors, and
a fast, vibrant global developer community, which makes its long-term survival highly likely.
Besides, ROS2 or its predecessor ROS is already in use at multiple project partners for prototyping
and development, thus minimizing onboarding efforts.
ROS2’s major drawback of lack of structure development tools is mitigated by longstanding and
ongoing work from project partners to bring modern, model-driven development to the ROS
world.

6.2 Advanced modularity

From the general “advanced modularity” concept, we have established a list of sub-concepts
detailing our expectations (chapter 6). Then, those sub-concepts have been transformed into a
first set of 11 software tools (chapter 7). Most of the tools we propose to develop will benefit from
work previously carried out by Fraunhofer IPA. This minimizes our development effort while
maximizing our chances of success.
Our development efforts will focus on eight tools:

• a data structure for component description;

• a database of components properties (using the above-mentioned structure);

• an automatic component properties extractor (from code);

• a component properties visualizer;

• a data structure for the system (robot);

• a tool to model the system as an assembly of components (robot);

• a tool that automatically generates code (except for the documentation);

• a tool for checking incompatibilities and missing information in a system model.

For two tools, the project will test existing solutions and make recommendations for use and/or
further development:

• a visual tool to launch or stop robot software components;

• a tool that checks code quality.

For one tool, we will draw up recommendations for future developments:

• a tool that creates the robot’s software distribution from its model.

The corpus of tools that will be available at the end of the project will provide a solid, concentrated
core of Model Design Engineering tools with a strong impact on product quality and development
productivity. Beyond the scope of the project, efforts will have to be continued to increase the

FP3 IAM4RAIL - GA 101101966 18 | 118 Interne

perimeter of certain tools (moving the system's data structure from the "logical" scale to the
"physical" scale, then to the mechanical scale) or by undertaking work on tools that are not yet
covered (software distribution tool).

The four tools that export constraints to developers have been identified. We have endeavoured
to limit this number. The precise list of constraints will be known in January 2024, following the
completion of a study conducted at the University of Stuttgart with the help of students.

6.3 Safety assessment

The Safety Plan is the document that summarizes all the elements to be produced for the safety
demonstration. It is divided into 4 chapters (Purpose of the Safety Plan, System Definition, Safety
Proof Concept, Safety Assessment Report), which represent the basic pillars of the safety case for
the process change of maintenance measures in the rail system.

The first section “Purpose of the Safety Plan” indicates that the safety plan is a covering document
which organizes and references the most important documents in the safety demonstration. For
this reason, this document does not itself contain the concrete performance of the system
components or the scope of the automation. This concretization takes place in the elements of
the safety-proof concept. It also presents the two cases for which the document is designed:

• initial verification of the maintenance procedure change regarding the replacement of

manual maintenance activities by a defined automated solution;

• verification of the maintenance procedure change involving the use of an evolved

automated solution (the change may come from the procedure, the automated system, or

both).

The second section “System Definition” allows the specific project to be broken down into its most
important components and ensures that all aspects of the process change have been considered
for proper safety verification. The overarching goal of the system definition is to create
transparency on the purpose, intended environmental context, boundaries, and functions of the
system.

The third section “Safety Proof Concept” structures the path that has to be followed to provide
proof of safe operation. The path has been organized around five categories. Four of those five
categories are based on the macroscopic machine functions (basic machine safety, movement
safety, inspection safety and intervention safety). A unified categorization would have been more
difficult to be achieved by working on technologies or components. These can be very varied in
robotics. The last category (Information safety) is an exception. It concerns the communication of
information between the robot and its environment. This enables us to emphasis cybersecurity
issues, which are becoming increasingly important in our society.
For each category, we established what has to be demonstrated. Our original intention was also
to suggest ways of establishing the "how" for each category. Unfortunately, it became clear to us
that, here too, technological diversity makes it impossible to unify methods for measuring the

FP3 IAM4RAIL - GA 101101966 19 | 118 Interne

effectiveness of devices in meeting safety requirements.

All the elements mentioned above lead to the fourth and final section, a central safety assessment
report.

This deliverable is the fruit of initial work that needs to be enriched. We will be working on two
types of improvements over the coming months:

• we will be developing or continuing to develop templates and guidelines to help write the

safety plan sections themselves.

o this will be the case for "basic machine safety", where the relevance and

contribution of the numerous standards to risk management in the railway context

will be highlighted;

o for the "system definition" a first template has been established. Its application to

several of the project's demonstrators should enable it to be enriched;

o a guide to the correct classification of a system in the categories useful for the

"safety proof concept" will probably be necessary;

o a template for the safety report will be developed alongside corresponding

guidelines.

• while we have specified here the elements to be supplied for the safety assessment, we

have not detailed how the various necessary activities are to be carried out. The second

axis will be the development of a Unified Safety Process for Railway Maintenance Robots.

6.4 Vision of robotics impacts on railway maintenance

Possible approaches fall into 2 families: “bottom-up” and “top-down” methods. Due to the
difficulties associated with the generalization stage, bottom-up approaches were quickly
discarded. Therefore, various alternative top-down methods were examined. The approach
adopted is a mix between a top-down “analytical approach” and a top-down “fictional approach”.

The “analytical approach” is based on a breakdown of maintenance into more basic processes. For
each of the elementary processes, a short list of relevant indicators (in the context of the
introduction of robotics) is proposed. Reference levels are determined. The last step consists of
evaluating the evolution of these indicators on a scale of approximately 5 years.

The “fictional approach” is inspired by Red Team Defense offered by Paris Sciences & Lettres to
the French armies. They propose, over a longer time horizon, futures for which the probability of
occurrence is not the key point. It is the reactions to be implemented in the face of these new
situations that have important value. Creating a collective imagination in addition to more
traditional commercial relationships can also be a strong glue in a new-born ecosystem.

The total duration of the selected approach is 18 months, based on 4 stages for the analytical
approach and on an iterative work of 6 to 9 months for the fictional part.

FP3 IAM4RAIL - GA 101101966 20 | 118 Interne

PART A – MIDDLEWARE

SELECTION

FP3 IAM4RAIL - GA 101101966 21 | 118 Interne

1 Executive Summary

Objective:
The primary objective of the work within task 18.1.1 “Selection of a common middleware” is to
evaluate options for a common software development middleware for robot control software for
use in the project and beyond. The need for a common software and hardware development
framework - or middleware - stems from the overall objective of introducing robotic automation
solutions for maintenance tasks, ranging from inspection, to repair to construction, and operation
tasks like regular cleaning into the railway sector. Developing a fit-for-purpose robotic system is a
technically challenging and economically expensive undertaking. Given the structure of the railway
sector and the size of individual operators and service providers specialized, individual solutions
are economically unfeasible. Individual sector markets, like train inspection, simply do not offer
sufficient market capacity for any robotic solution provider to invest in a “one-of” specialised
robotic system.
Aiming at an open robotic hardware and software ecosystem, where components can be
developed once and reused across multiple use cases, combined with development tools designed
to minimize system integration efforts (traditionally 40% or more of development costs for
robotics systems) creates the necessary market size for robotic component and solution providers
to enter the railway sector. The common software development framework discussed here is a
cornerstone of such an open and economically viable market.

Methodology:
We first present a survey of commonly used past and present robotic software frameworks. The
candidates have been selected through a literature review of peer-reviewed papers dealing with
software development in robotics. Common evaluation criteria have been extracted from the
surveyed frameworks and adjusted to the requirements for a common software development
framework. The list of candidate frameworks and the list of selection criteria have been discussed
and refined in multiple online meetings with all relevant stakeholders in the project. Based on the
agreed criteria, a decision for one candidate framework has been taken.

Conclusion:
The project selects the ROS2 software development framework as its common middleware.
Although technologically more advanced options exist, like the Japanese ORiON framework, the
European SmartSoft framework, or the FiWare framework, ROS2 provides the best balance
between technological capabilities, wide-spread support, especially with hardware vendors, and
a fast, vibrant global developer community, which makes its long-term survival highly likely.
Besides, ROS2 or its predecessor ROS is already in use at multiple project partners for prototyping
and development, thus minimizing onboarding efforts.
ROS2’s major drawback of lack of structure development tools is mitigated by longstanding and
ongoing work from project partners to bring modern, model-driven development to the ROS
world.

FP3 IAM4RAIL - GA 101101966 22 | 118 Interne

2 Abbreviations and acronyms

Abbreviation / Acronym Description

ACRoSeT

Arquitectura de Control para Robots de Servicio

Teleoperados - framework for developing robotized

systems

AERO-STACK Software framework for aerial robotic systems

ARM 64

Advanced RISC Machines (and originally Acorn RISC

Machine) is a family of RISC instruction set architectures

for computer processors with 64-bit internal structure. A

reduced instruction set computer (RISC) is a computer

architecture designed to simplify the individual

instructions given to the computer to accomplish tasks.

ArmarX
Event-driven component-based Robot Development

Environment

ASEBA
Robot Development Environment (link to the Thymio

robot)

BIP Robot Development Framework

BSD license

BSD (Berkeley Software Distribution) licenses are a

family of permissive free software licenses, imposing

minimal restrictions on the use and distribution of

covered software.

C/C++
C and C++ are high-level, general-purpose programming

languages

CAMUS Robot Development Framework

CANOpen

CANopen is a communication protocol and device

profile specification for embedded systems used in

automation.

CLARAty

Coupled Layer Architecture for Robotic Autonomy

(CLARAty), which is designed to improve the

modularity of system software

CMake

CMake is cross-platform free and open-source software

for build automation, testing, packaging and installation

of software by using a compiler-independent method.

CoolBot
Open Source Distributed Component Based

Programming Framework for Robotics

CPU

A central processing unit (CPU) is the most important

processor in a given computer. Its electronic circuitry

executes instructions of a computer program, such as

arithmetic, logic, controlling, and input/output (I/O)

operations.

DDS

The Data Distribution Service (DDS) is a standard that

aims to enable dependable, high-performance,

interoperable, real-time, scalable data exchanges using a

publish–subscribe pattern.

DSL A domain-specific language (DSL) is a computer

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language

FP3 IAM4RAIL - GA 101101966 23 | 118 Interne

Abbreviation / Acronym Description
language specialized to a particular application domain.

This is in contrast to a general-purpose language (GPL),

which is broadly applicable across domains.

ehterCAT

Ethernet-based fieldbus system standardized in IEC

61158. It is suitable for both hard and soft real-time

computing requirements in automation technology.

ESROCOS
Open source framework which can assist in the

generation of flight software for space robots

EU-RAIL MAWP
Europe's Rail Joint Undertaking Multi-Annual Work

Programme

Fawkes

A component-based Software Framework for Robotic

Real-Time Applications for various Platforms and

Domains

GeNOM
Generator of Modules is a tool to design real-time

software architectures

Github

GitHub, Inc. is a platform and cloud-based service for

software development and version control using Git,

allowing developers to store and manage their code.

GUI

A graphical user interface, or GUI, is a form of user

interface that allows users to interact with electronic

devices through graphical icons and audio indicators

instead of text-based UIs, typed command labels or text

navigation.

ICE

The Internet Communications Engine (Ice) is an object-

oriented RPC framework that helps you build distributed

applications with minimal effort.

IDE

An integrated development environment (IDE) is a

software application that provides comprehensive

facilities for software development.

IEEExplore Digital Library

Linux
Linux is a family of open-source Unix-like operating

systems based on the Linux kernel.

LTS

Long-term support (LTS) is a product lifecycle

management policy in which a stable release of computer

software is maintained for a longer period of time than

the standard edition.

MacOS
MacOS is an operating system developed and marketed

by Apple Inc. since 2001.

MARIE
Middleware framework oriented towards developing and

integrating new and existing software for robotic systems

MCA Software framework with real-time capabilities

MiRo
Distributed object-oriented framework for mobile robot

control

MIT license
The MIT License is a permissive free software license

originating at the Massachusetts Institute of Technology

FP3 IAM4RAIL - GA 101101966 24 | 118 Interne

Abbreviation / Acronym Description
(MIT) in the late 1980s;

MOOS A C++ cross platform middle ware for robotics research

OCP Robot Development Framework

OpenRDK
modular framework focused on rapid development of

distributed robotic systems

OPRos

Open Platform for Robotic Services (OPRoS) is a

component-based open-source platform, and it has

Integration Development Environment (IDE) tools, a

robot framework for robot operation, a server, and a test

and verification tool.

Orca
Open-source framework for developing component-

based robotic systems

ORiN

ORiN (Open Resource Interface for the Network) is a

framework for applications that can handle a variety of

resources, ranging from robots to databases and local

files, in an integrated manner.

Orocos
Open Robot Control Software is a portable C++ library

for advanced machine and robot control.

OS

An operating system (OS) is system software that

manages computer hardware and software resources, and

provides common services for computer programs.

PEIS-Ecology
Ecology of Physically Embedded Intelligent Systems,

Framework for Robotics

Player/Stage

The Player Project (formerly Player/Stage Project)

creates free and open-source software for research into

robotics and sensor systems.

pocolibs
System communication and real-time primitive layers

used by GenoM modules.

Python
Python is a high-level, general-purpose programming

language.

QA

Quality assurance (QA) is the term used to describe the

systematic efforts taken to assure that the product meets

the expectations.

Robocup RoboCup is an annual international robotics competition.

RoboFrame
Software framework tailored for heterogeneous teams of

autonomous mobile robots

ROCK
Robot Construction Kit - a robot software development

environment

ROS

Robot Operating System

A collection of tools, software libraries and common

practices to build sophisticated robot control software

from reusable building blocks and a powerful

communication layer. The de-facto standard in academia

for robot software development.

ROS2 Version 2 of ROS, addressing most of ROS’ architectural

FP3 IAM4RAIL - GA 101101966 25 | 118 Interne

Abbreviation / Acronym Description
and cyber-security shortcomings.

RPC

A remote procedure call (RPC) is when a computer

program causes a subroutine to execute another computer

on a shared network without the programmer explicitly

writing the details for the remote interaction.

RSB

Robotics Service Bus (RSB) is a message-oriented,

event-driven middleware aiming at scalable integration

of robotics systems in diverse environments.

RSCA

Robot Software Communication Architecture provides a

standard operating environment for robot applications

together with a framework that expedites the

development of such applications.

RT-Middleware

RT-middleware (Robotics Technology Middleware) is a

common computing platform technical standard for

robots based on distributed object technology

Ruby
Ruby is an interpreted, high-level, general-purpose

programming language.

SBC

A single-board computer (SBC) is a complete computer

built on a single circuit board, with microprocessor(s),

memory, input/output and other features required of a

functional computer.

SCOPUS

arge, multidisciplinary database of peer-reviewed

literature: scientific journals, books, and conference

proceedings

SLICE

Slice is the interface definition language used by Ice.

With it, you can define the client–server contract for your

application, including all of the interfaces, operations,

parameters, data types, and exceptions.

SmartSoft
Framework for developing component-based robotics

systems

TCP/IP

The Transmission Control Protocol (TCP) is one of the

main protocols of the Internet protocol suite. It originated

in the initial network implementation in which it

complemented the Internet Protocol (IP).

UDP

The User Datagram Protocol (UDP) is one of the core

communication protocols of the Internet protocol suite

used to send messages (transported as datagrams in

packets) to other hosts on an Internet Protocol (IP)

network.

Unix

Unix is a family of multitasking, multi-user computer

operating systems that derive from the original AT&T

Unix.

Windows

Microsoft Windows is a group of several proprietary

graphical operating system families developed and

marketed by Microsoft.

FP3 IAM4RAIL - GA 101101966 26 | 118 Interne

Abbreviation / Acronym Description
WP Work Package

X86_64

x86_64 is a family of complex instruction set computer

(CISC) instruction set architectures with 64 bits internal

structure.

XBotCore Light-weight, Real-Time software platform for robotics

XML

Extensible Markup Language (XML) is a markup

language and file format for storing, transmitting, and

reconstructing arbitrary data.

YARP

Yet Another Robot Platform (YARP) is a software

framework designed to allow different components of a

robot system to communicate with each other and to

interact with the outside world.

YCM

YCM contains a set of CMake files that support the

creation and maintenance of repositories and software

packages. YCM has been written to solve some of the

problems encountered while managing large research

projects but it can be used outside its initial context.

FP3 IAM4RAIL - GA 101101966 27 | 118 Interne

3 Objective/Aim

Within the project we aim to establish a modular, versatile robotics platform for performing
various maintenance tasks in the railway sector. Such maintenance tasks can range from the
inspection of trains, infrastructure (tracks, signalling…), and stations, to the cleaning, actual repair,
or construction works. Given the shortage of skilled workers across Europe, which is only
aggravated by our ageing societies, it seems natural to automate processes and use robotic
solutions to relieve human workers from tedious, physically hard, or dangerous work.
Today’s robotic solutions are predominantly designed for indoor use in highly structured
environments that are designed with robot automation in mind, and are only economically
feasible when run at capacity for long periods. Today’s robotic solutions are tailored for purpose,
with the prime example being the highly optimised automotive production lines. Such type of
robotic automation is not economically feasible in the railway sector, particularly in maintenance,
due to the disproportional high variance in tasks at rather low volume per task.
Instead of designing one individual robot system “from scratch” for each task (and specifically
tailored to that task), we need to aim for a robotic ecosystem that maximizes the reuse of
components on the hardware and software side. This allows us to build task-matching robotic
systems with significantly reduced construction efforts from pre-existing building blocks. Only by
maximising the reuse (and keeping the number of specialized components low) we can reach an
“economy of scale” where it becomes economically viable for robot technology providers to enter
the railway sector.

This document looks at the software side of building robotic systems. Although a robot is a physical
entity, its versatility and performance are primarily software-defined. This is even truer for robots
working in lesser structured environments or facing a significant variance in their tasks.
Specifically, this document provides an overview of available frameworks for modular robot
software design and software component reuse. The document lists possible selection criteria for
the choice of the main framework used throughout the whole project, names the selected
framework, and provides the reasoning for its selection.

FP3 IAM4RAIL - GA 101101966 28 | 118 Interne

4 Methodology

To select a common middleware framework for the project, a structured approach focused on
multiple online workshops has been chosen. Deploying an open, interactive approach ensures
early and transparent involvement of all relevant stakeholders. The workshops have been
prepared by Fraunhofer IPA, working as an associate entity to SNCF in the project. Fraunhofer IPA
has a track record in robot software development and is one of the leading research institutions
in the world in the field of open-source robotics, and robot system design. The process of selecting
a common middleware or software development framework had four stages:

• surveying the available options;

• presenting and discussing available frameworks with the consortium;

• deriving common selection criteria;

• selecting a candidate framework based on available candidates and common selection

criteria.

The unusual approach of first surveying without previously defining a set of requirements for the
wanted framework has a two-fold reason: First, taking advantage of parallel work in a PhD thesis
project recently started at Fraunhofer IPA, which was looking at robotic software frameworks at a
larger scale. Second, ensured realistic expectations about the state of the art in software
frameworks, which enabled us to define clearer and measurable requirements.

4.1 Survey of robotic software frameworks

4.1.1 Common Middleware vs. Software Development Framework

Although the deliverable scope is task 18.1.1 “Selection of a common middleware”, it would not
be sufficient to use only a middleware. A mere middleware in the narrow technical sense would
not be sufficient. To enable a robotic (software) ecosystem we need more than the ability to
exchange messages between parts of a system, which is the typical task of a middleware. We need
a full-fledged component framework that promotes the development and use of interchangeable
hard- and software components, that can be composed into a larger system with the least possible
effort. While a common middleware (in the narrow sense of the word) is a precondition for any
such component framework, any useful framework adds a set of tools and best practices on how
to implement components and make use of the middleware. Specifically, it adds in common, built-
in infrastructure components for managing the middleware and the system lifecycle. As such, we
only looked at full software development frameworks in use in robotics over the last decade, and
not just at the underlying types of communication middleware. Some of the surveyed frameworks
support multiple types of communication middleware.

4.1.2 Initial data selection

The main methodology is depicted in Figure 1. The study had been performed by our colleague
Christoph Hellmann-Santos as part of his PhD work at Fraunhofer IPA and is as of yet (December
2023) unpublished. Data and presentation here are used with permission.

FP3 IAM4RAIL - GA 101101966 29 | 118 Interne

The selection process was initially conducted in two parallel search phases, one based on
keywords, the other on citations. The results of the 2 search approaches were then combined.

The study started with a keyword search across relevant online publication databases, in particular
IEEEXplore and Scopus, yielding 208 candidate papers. Quality and relevance thresholds (131
papers out of 208) and duplicate removal (20 papers out of 208) yielded 57 candidate papers, each
expected to describe one framework in depth or comparing multiple frameworks. Pre-screening
excluded 23 papers (out of 57) for not falling in the scope of the survey based on abstract and
other publicly available information. For the remaining 34 papers full text was retrieved. Of those
two were excluded for discussing the same framework discussed in other candidate papers, 11
were excluded for not providing substantial information, e.g. only providing citations, and 11 more
were excluded for not proposing a real framework.

24 additional papers were identified by citation search, which were not covered by the previous
keyword search. Pre-screening and screening have also been applied to the 24 additional papers
identified by citation search. None were excluded.

This yielded 34 frameworks, each covered by at least one comprehensive paper, for inclusion in
the study.

Figure 1 Flow chart for identification of candidate frameworks for comparative study.

FP3 IAM4RAIL - GA 101101966 30 | 118 Interne

4.1.3 Preliminary analysis and filtering

The survey identified 34 software frameworks for robotics. These can be in part grouped into
framework families, as shown in Figure 2. The surveyed frameworks and their ecosystems vary
significantly in terms of size, approach, community and used terminology.

Framework

GeNOM X X X X X X X Ecosystem

GeNom2 X X x x x x x x x GeNOM

GeNom3 x x x x x x x x x x x x x x MCA

MCA x x x x x x x x x ORiN

MCA2 x x x x x Orocos

ORiN x x x X ROS

ORiN2 x x x x x x x x x x x x x x x URC South Korea

ORiN3 x x x RoboCup

Orocos x None

Orca x x x x x

ROCK x x x x x x x x x x x x x

ESROCOS x x x x x x

ROS x x x x x x x x x x x x x x

ROS2 x x x x xx x x

RSCA x

CAMUS x x x x x x x x x x

OPRos x x x x x x x x x x

RoboFrame x x x x x

Fawkes x x x x x x x x x x x x x

SmartSoft x

Claraty x x x x x x x x x x x x

OCP x x x x x x x x x

MiRo x x x x x x x x x x x x x x x x x

Player/Stage x

CoolBot x x x x x x x x

MARIE x x x x

RT-Middleware x x x x x x x x x x x x x x x x x x

PEIS-Ecology x x x x x x x x x x

BIP x x x x x x x x x x x x x x x x x x

ACROSET x x x x x

YARP x x x x x x x x x x x x x x x x x

ASEBA x x x x x x x x x x x x x x x x

OpenRDK x x x

MOOS x x x x x x x x x x x x x x x

RSB x x x x x x x x x x x x

AERO-STACK x x x x x x x x x

Amarx x x x x x x x x

XBotCore x x x x x x

2000 2005 2010 2015 2020

2000 2005 2010 2015 2020

Figure 2 Family inheritance chart for surveyed software frameworks.

FP3 IAM4RAIL - GA 101101966 31 | 118 Interne

For this study, comparison criteria were split into two broad categories:
1. Technical criteria:

a. type of software artefacts present in a framework or ecosystem;

b. architectural design of the framework.

2. Social criteria:

a. type of (defined) roles in the community supporting the framework or ecosystem;

b. rules and practices to ensure quality.

For some criteria, further sub-criteria or indicators were defined. In particular, the varying
terminology used in different surveyed frameworks was unified for proper comparison. The
following unified terms were used throughout the survey:

For Artefacts (criterion 1.1):

1. Library: Source/Binary piece of software providing (elementary) routines within a specific

task domain.

2. Component: An executable piece of software, usually based on multiple libraries, used to

achieve an objective.

3. Package: Deployment artefact, a combination of libraries and components, targeted at a

specific objective.

4. Bundle: Sort of application, combining one or more packages into a ready-to-use entity

to achieve an objective.

5. Distribution: Combination of bundles and other packages, all compatible with each other,

addressing multiple objectives.

For Roles (criterion 2.1):
6. Library developer: People maintaining the source code of a library.

7. Component developer: People building an executable, often reusable, entity solving a

specific task.

8. Packager: People combining components and libraries with development, deployment

and dependency information.

9. Bundle developer: People combining packages into something solve an application-level

task.

10. Distributor: People combining compatible packages, components and low-level libraries.

Eligibility elimination

Two initial requirements that must be met by any framework to qualify for further analysis were
defined: availability of a package management system (needed to support distributed
development and separation of component developers from users) and active maintenance.
Obviously, we can only build a future ecosystem of robotics for railways on top of an actively
maintained framework. The following Table 1 lists all 34 frameworks and their maintenance and
package management status.

FP3 IAM4RAIL - GA 101101966 32 | 118 Interne

Table 1 All 34 surveyed robotic software frameworks and their maintenance status

An empty cell means no data is available. A ✓ means the feature is present. A ✳ means the feature

is partially present (but e.g. not well supported or maintained). A ✗ means the feature is not
present.

Framework Source Active Pkg. mngnt

ACRoSeT Iborra et al.(2009) ✗ ✗

AERO-STACK Sanchez-Lopez et
al.(2016)

ArmarX Vahrenkamp et al.(2015) ✓

ASEBA Magnenat et al.(2007) ✗ ✗
BIP Basu et al.(2011) ✗

CAMUS Kim et al.(2005) ✗ ✗
CLARAty Volpe et al.(2001) ✗ ✳
CoolBot Dominguez-Brito et

al.(2004)
✗ ✳

ESROCOS Arancon et al.(2017) ✓ ✓
Fawkes Niemueller et al.(2010) ✓ ✳

GeNOM Fleury et al.(1997) ✓ ✓
MARIE Cote et al.(2004) ✗ ✗

MCA Scholl et al.(2001) ✗ ✳
MiRo Utz et al.(2002) ✗ ✗
MOOS Benjamin et al.(2010) ✓

OCP Paunicka et al.(2001) ✓ ✗
OpenRDK Calisi et al.(2008) ✗ ✗

OPRos Han et al.(2012) ✗

Orca Brooks et al.(2005, 2007) ✗ ✳
ORiN Mizukawa et al.(2002) ✓ ✳
Orocos Bruyninckx et al.(2003) ✓ ✓
PEIS-Ecology Saffiotti and

Broxvall(2005)
✗ ✗

Player/Stage Player/Stage Gerkey et
al.(2003)

✗ ✳

RoboFrame Petters and Thomas(2005) ✗ ✗
ROCK Joyeux and Albiez(2011) ✓ ✓

FP3 IAM4RAIL - GA 101101966 33 | 118 Interne

Framework Source Active Pkg. mngnt

ROS Quigley et al.(2009) ✓ ✓
ROS2 Thomas et al.(2014) ✓ ✓
RSB Wienke and Wrede(2011) ✗

RSCA Yoo et al.(2006) ✗ ✗
RT-Middleware Ando et al.(2005) ✓ ✳
Smartsoft Schlegel and Worz(1999) ✓ ✳
XBotCore Muratore et al.(2017) ✓

YARP Metta et al.(2006) ✓ ✓

4.1.4 Candidate frameworks detailed analysis

After eligibility filtering, keeping only the frameworks that are active and have (or potentially have)
package management, only 11 frameworks remained. The following section briefly introduces
each remaining candidate:

ArmarX

ArmarX is a robot programming environment developed by the Karlsruhe Institute of Technology
for humanoid robots with a strong focus on the ARMAR robot series. ArmarX is organised in three
layers, the middleware layer, framework layer and application layer. ArmarX’s middleware is built
upon ICE which uses the SLICE interface definition language. The middleware provides basic
building blocks called ArmarX-Objects and an ArmarX-Manager that makes sure all necessary
ArmarX-Objects necessary for a process are available and loaded. ArmarX applications are
composed of two different entity types, state charts and components. While components create
an interface to an algorithm and state charts execute a process based on the components. ArmarX
provides a developer tool for package management as well as a deployment tool. ArmarX is
actively maintained and used on the ARMAR robot series.
Properties

• Libraries: In ArmarX libraries are handled as system dependencies in CMake files that

need to be installed manually or as ArmaX packages.

• Components: ArmarX components do not have a specific interface description, they are

defined by their source code.

• Packages: ArmarX packages are defined by their structure and CMake Build

Instructions.

• Bundles: ArmarX supports bundles via so called statecharts. These are modelled in a

development environment, C/C++ code is generated and finally manually adapted. Bundles

are handled in the same way as other packages. It is unclear, if nesting of state charts is

possible.

FP3 IAM4RAIL - GA 101101966 34 | 118 Interne

• Distribution: ArmarX provides code components in maintained repositories with

coordinated release tags. A package index is not available.

Fawkes

Fawkes is a robot software framework that was designed to meet the requirements of software
for controlling robots. Fawkes is mainly used in the area of service robotics and has been
thoroughly tested in RoboCup competitions. The core of the framework are a communication
mechanism and a component concept. In Fawkes, components are plugins, that can be loaded at
runtime and communicate via defined interfaces using a blackboard communication mechanism.
The blackboard communication mechanism is realised using shared memory but there is also
support for remote access. Fawkes comes with a set of plugins for common robotics problems
such as navigation which are stored in the main repository. Fawkes was actively maintained until
mid-2022.
Due to the lack of recent activities, the “Properties” section has not been compiled.

GeNOM

GenoM is a robot software framework which uses a specification language to describe and
generate robot software components and was introduced by Fleury et al.(1997). It originally used
pocolibs as middleware but has since then been adapted to OROCOS and is since version 3
abstracted from middleware. The software is available under open source license (BSD licence).
GenoM is part of the open robots architecture. It does provide a formal description for each
module and enables integration of the specified modules. GenoM packages are managed by the
robotpkg tool.
Properties

• Libraries: Can be packaged.

• Components: Are modelled using a DSL. Components can be generated for different

middleware types.

• Packages: Are described using robotpkg approach which will define Build instructions,

dependencies, package description, source code archive and other information about

the package.

• Bundles: Are not supported.

• Distribution: robotpkg provides a collection of available packages.

MOOS and MOOS-IvP

MOOS is a mission oriented operating suite targeting marine robots. The suite consists of two parts
first MOOS which is a robotics middleware and second MOOS-IvP which is a set of open source
modules that provide autonomy to for marine robots. The middleware provides a simple publish
and subscribe communication mechanism implemented based on TCP/IP that uses a central
blackboard called MOOSDB. The autonomy layer provides modules for core autonomy,
behaviours, simulation, mission control and more. Moos and Moos-IvP are distributed separately.
A distribution contains all available modules in one repository. The framework is actively

FP3 IAM4RAIL - GA 101101966 35 | 118 Interne

maintained.
Properties

• Libraries: In MOOS libraries are handled as dependencies of a module.

• Components: Components are called modules in MOOS-IVP.

• Packages: MOOS does not differentiate between components and packages. Modules

are described by a manifest file.

• Bundles: MOOS does have implicit and limited support for bundles. MOOS provides

pAntler and a launch description file format (.moos) for launching multiple processes.

The launch description files seem to not support import functionality for subsystems

specified in other “.moos” files, this limits the capability to specify bundles.

• Distribution: MOOS and MOOS-IVP have a distribution that clusters all modules in a single

source code archive. Distributions are described using a manifest file. MOOS does not

have automated package management tools.

ORiN

Mizukawa et al.(2002) introduce ORiN. ORiN focusses on connecting applications running on a PC
to an industrial PC. The framework uses RRD to describe components, the RAO engine to create a
RAO object that represents a robot during run-time and exports robot variables that can be
accessed by the robotic application that is running on the PC. The Orin framework is active as the
ORiN Consortium and has published specifications. Regarding package management, the
framework is shipped as an SDK that includes most available components. This framework is used
almost exclusively in Asia, obth in industry and academia. Beyond its possible technical potential,
this is a limiting factor for its use in our context.

Properties

• Libraries: Visual Basic, Visual C, C++, Delphi, Labview

• Components: Visual Basic, Visual C, C++, Delphi, Labview

• Packages: no difference between components and packages described as plugins. core

elements include in the SDK

• Bundles: uncertain notion in this environment

• Distribution: through the SDK

Orocos

Bruyninckx et al. (2003) introduce the robot software framework Orocos. The framework focusses
on providing an open-source real-time framework for simplifying research on servo algorithms,
motion interpolators and inter-process communication. The framework consists of a kinematics
and dynamics library (KDL), a baseyian filtering library (BFL), real-time finite state machine (rFSM)
and the real-time toolkit (RTT). The framework is actively maintained. The Orocos toolchain uses
the tool autoproj for package management. The tool uses so called package sets to list and
describe packages to build and install from source.
Properties

FP3 IAM4RAIL - GA 101101966 36 | 118 Interne

• Libraries: C/C++, Python.

• Components: C/C++, Python (no real distinction between libraries and components).

• Packages: Implemented as simple Folders and CMake scripts.

• Bundles: Implemented as Orocos script artefacts.

• Distribution: Only core components, no ecosystem distribution.

ROCK

The robot construction kit (ROCK) [33] builds on OROCOS. ROCK extends OROCOS with additional
components but the main addition is the orogen toolchain. The orogen toolchain is a model-driven
approach for designing components based on OROCOS’ real-time tool kit. The model driven
approach leverages a ruby based DSL for describing components and composing systems. ROCK is
actively maintained and has a large component ecosystem. ROCK uses autoproj as package
manager. Package collections are defined in package sets. Package management focusses on
fetching a packages source code which is then built locally.
Properties

• Libraries: ROCK handles libraries as separate packages that can be included into ROCK

components.

• Components: ROCK components are described by an oroGen specification which is written

in Roby a Ruby-based DSL, which indicates communication ports and configuration

parameters and other information about the component.

• Packages: ROCK packages are described by a manifest.xml, that follows the package

manifest specification. Build instructions for packages are handled by CMake.

• Bundles: ROCK supports bundles. Bundles are described in roby language and can be

run with the syskit tool. Bundles itself are handled as packages and contain a

manifest.xml as well.

• Distribution: ROCK packages are distributed using package sets. Package sets are stored

dispersedly in different GitHub organisations that host rock packages. An incomplete

index of packages exists on the rock website.

ROS/ROS2

ROS, the robot operating system was first presented in 2009. ROS provides a programming
framework and communication mechanism for creating complex robot software. ROS enables
creating a computation graph consisting of nodes (processes) and edges (communication). ROS
provides three different communication paradigms: publish and subscribe, service/client and
action/client communication. ROS also comes with a rich suite of tools to develop, launch, debug
and analyse ROS systems. A large component ecosystem exists for ROS as well as a method for
creating ROS distributions of compatible packages. An index of packages that are released into
ROS distributions is available.
Properties

FP3 IAM4RAIL - GA 101101966 37 | 118 Interne

• Libraries: In ROS external libraries are handled as system dependencies or if not

available a vendored ROS package for the library is created.

• Components: ROS components are not specifically described. Their interface is

characterized by their source code.

• Packages: ROS packages are described by a package.xml file that follows the package

manifest specification. ROS packages use CMake with catkin extension for build

instructions.

• Bundles: ROS supports bundles implicitly using launch files and package descriptions.

The launch file indicates which components to launch and how to connect their

communications interfaces.

• Distribution: ROS packages are distributed via rosdistro in different distros (versions).

ROS package maintainers can release their package into rosdistro via an automated

tool called bloom. ROS distros are available as binary packages for certain target

operating systems.

RT-Middleware

Ando et al.(2005) introduce RT-Middleware which started in 2002. Its purpose is to establish
technologies for integrating robot components into robot systems. RT-Middleware describes a
component architecture that each component needs to implement. Components can be
assembled using a GUI tool, script language or xml file. An open source implementation of the
middleware exists and is actively maintained. An online catalogue of existing components is
available. Apart from the catalogue no package management system exists.
Properties

• Libraries: In RT-Middleware external libraries are handled as dependencies on

component level.

• Components: RT-Middleware components are described using an xml file.

• Packages: RT-Middleware does not have a package manager. Common practice seems

to be a separate source code folder per component that includes build instructions

and some information about dependencies.

• Bundles: RT-Middleware supports bundles implicitly using RT-System description

files in XML format. RT-System files can be created using the RT Development

Environment.

• Distribution: RT-Middleware does not provide a distribution of ecosystem packages. An

index of available packages is available online, but packages need to be downloaded

manually and many links are dead.

SmartSoft

Schlegel and Worz(1999) introduce SmartSoft as a software framework to implement
sensorimotor systems. The framework not only dictates modularized software components but

FP3 IAM4RAIL - GA 101101966 38 | 118 Interne

also contains structural rules and templates for robotics systems. Stampfer et al.(2016) present
updates to the SmartSoft ecosystem that focus on methodologies and tools for model driven
composition of components. The SmartSoft framework features ready to use packages, however
there is no dedicated tool for managing these packages and a commercial component marketplace
is available.
Properties

• Libraries: Are not managed by SmartSoft and need to be installed manually by the

user.

• Components: Are modelled using a graphical IDE and the code structure is generated in

C++.

• Packages: Are defined as Eclipse projects.

• Bundles: SmartSoft supports bundles via so-called systems. These are modelled in a

development environment.

• Distribution: SmartSoft does not provide a distribution. There are however GitHub

repositories with common components and systems. No package management tool is

available, manual download is required as well as manual dependency installation.

YARP

Metta et al.(2006) introduce yet another robot platform (YARP). YARP was developed for meeting
the requirements of humanoid robotics development. Humanoid developers are facing fast
changing hardware platforms. Therefore, software reuse is very important. YARP supports this by
introducing concepts for modularity, abstraction and platform independence. YARP is available as
an open-source library and actively maintained. To deal with the bleeding edge nature of the YARP
ecosystem, the source management and build tool superbuild was introduced.
Properties

• Libraries: In YARP external libraries are handled via CMake or YCM.

• Components: YARP components are not specifically described. Their interface is

characterized by their source code. YARP has standard component interfaces for a

number of component classes.

• Packages: YARP packages are defined by their structure and CMake file.

• Bundles: YARP supports bundles implicitly using robot interface xml files that

describe components that need to be launched for a specific subsystem.

• Distribution: YARP does not provide a distribution, packages are hosted dispersedly in

repositories at different version control hosters. The robotology organization provides

a set of packages managed by YCM, which is the closest thing to a distribution in the

YARP ecosystem.

4.2 Common requirement criteria

Defining common requirements criteria turned out to be a challenging task, due to limited
experience with different robot software development frameworks in the consortium. For this

FP3 IAM4RAIL - GA 101101966 39 | 118 Interne

reason, we first conducted and presented the survey on existing frameworks (section 4.1) and
then started to collect requirements for the future IAM4RAIL common framework. Requirement
criteria solicitation was carried out in multiple online workshops with interested partners from the
consortium from March to May 2023. This resulted in a set of technical and a set of non-technical
requirements and a set of overarching or general requirements.

The identified general requirements are:

• support modular hardware and software;

• rich ecosystem of available components;

• long-term support from a strong community;

• robust and mature technology;

• suitable for modern software engineering methods.

These general requirements were in subsequent discussions refined into better technical and non-
technical requirements. The non-technical requirements were dubbed “social requirements” for
better distinguishability. The following initial requirements served as starting point for the
discussions to refine the technical requirements into criteria that could be used to rank the
remaining 11 candidate frameworks from the survey:

• decoupling of drivers and algorithms;

• real-time support;

• support of multiple languages wanted (Python, C/C++, …);

• support of multiple OS;

• support for closed-source components as well as open-source components.

Correspondingly, the following initial requirements served as a starting point to refine the “social”
requirements:

• rich set of ready-to-use components;

• middleware must be useful past project runtime;

• long-term support from the existing community needed;

• need a defined way to collaborate and influence the future direction of

framework/middleware

The discussion of criteria yielded additional questions regarding the relevance of some previously
discussed criteria to guide the selection process:
• Is the support of multiple OS really a key point or is Linux support sufficient?
• Do we need the compatibility with multiple CPU architectures: x86_64, ARM 64
• Do we also need compatibility with light-embedded systems like microcontrollers?
• Are there significant differences between the frameworks in terms of performances: min

latency (or max frequency), bandwidth… or is the performance so high that it doesn’t really
matter? How does the performances depend on other elements of the system?

• Is it possible to measure the robustness of the core components (the ones that provide the
“middleware functionalities”)? Are there significant differences?

FP3 IAM4RAIL - GA 101101966 40 | 118 Interne

• Some middleware (at least ROS2) seem to use DDS some others do not. What are the
impacts of this choice?

• Which technical properties can we attach to the certifiability of a middleware?
• Which technical properties can we attach to the maintainability of a middleware? Degree

of adoption of external standards? Is it feasible to compare the number of proper lines of
codes used for the core functions?

• The study “Comparison Study of Robotic Middleware for Robotic Applications” by Gergely
Magyar claims for the Orocos middleware “modules have high quality from the technical
point of view”. Is that really based on a technical concept or is that because of the more
rigorous work of the developers? Can we close the gap with our layer for advanced
modularity?

• Which tools do we need? Simulation? IDE? Graphical IDE? Data visualization? Data
recording and playback?

• A study (https://www.hindawi.com/journals/jr/2012/959013/tab2/) mention different
properties: fault tolerance, distributed environment, dynamic wiring and safety. What does
it mean?

• The same study mentions a “control model” property. What could be the impact of this
property for us?

• Concerning network protocols (RPC services, TCP, UDP…) are there differences that should
draw our attention because these choices may significantly restrict certain uses?

While some of these additional guiding questions address measurable properties of the
frameworks, other serve more as a means to clarify what we actually want from our common
framework.

The following answers have been identified (questions not listed in Table 2 have been dropped for
varying reasons):

Table 2 Guiding question when defining selection criteria with answers.

Guiding question Resolution

Is the support of multiple OS really a
key point or is Linux support
sufficient?

No. We expect to run Linux on board of the robot.
Everything not running Linux will likely be specialized
hardware/software combinations existing outside the
common framework and interface with it through
some sort of software bridge.

Do we need the compatibility with
multiple CPU architectures: x86_64,
ARM 64

Yes, at least support for ARM based SBCs is needed

Do we also need a compatibility with
light embedded systems like
microcontrollers?

No

Are there significant differences Yes, but they are hard to quantify and depend on the

https://www.hindawi.com/journals/jr/2012/959013/tab2/

FP3 IAM4RAIL - GA 101101966 41 | 118 Interne

Guiding question Resolution

between the frameworks in terms of
performances: min latency (or max
frequency), band width… or is the
performance so high that it doesn’t
really matter? How does the
performances dependents on other
elements of the system?

task, and system resources. Also, it is unclear if
observed differences really are a consequence of
architectural properties of the framework, or mere
side-effects of the implementation of some algorithms.
A proper experimental validation was deemed not
worth the effort.

Is it possible to measure the
robustness of the core components
(the one that provide the “middleware
functionalities”)? Are there significant
differences?

Theoretically possible to measure but challenging in
practice and requiring a multitude of the efforts
available in the work package. Empirical measuring
the ROS robustness in a real-world setting has been
done at IPA in a different project and had consumed
several person months of work.

Some middleware (at least ROS2)
seem to use DDS some others do not.
What are the impacts of this choice?

DDS, if implemented and used correctly, offers (hard)
real-time guarantees (on hardware that can support
this), as well as data integrity and data security
(cryptographically strong authentication and
authorisation)

Which technical properties can we
attach to the certifiability of a
middleware?

Unknown, to be addressed in WP18.2.
However, and in light of standards like IEC61508-3, we
assume that traceability, availability of source code
and (for open-source projects) a well-defined
governance structure will contribute.

Which technical properties can we
attach to the maintainability of a
middleware? Degree of adoption of
external standards? Is it feasible to
compare the number of proper lines of
codes used for the core functions?

In principle we can use established code quality
metrics to gauge the maintainability of a software
framework. However, the question is, which parts to
measure: Supporting tools? Core components? The
actual underlying middleware? A simple measure like
number of proper lines of code can be misleading,
especially when the frameworks in question offer
significant differences in functionality.

Which tools do we need? Simulation?
IDE? Graphical IDE? Data visualization?
Data recording and playback?

No clear consensus could be reached on what is
needed. For example, tools for data visualization are
not framework specific. Surveyed frameworks do not
come with own IDEs, although some come with
framework-specific plugins for common IDEs or
specialised tools to handle certain development steps
that are framework specific.

4.2.1 Final set of technical criteria

FP3 IAM4RAIL - GA 101101966 42 | 118 Interne

The following set of final “technical” requirements have been identified:
1. Performance of middleware

1.1. Data throughput and latency

2. Supported OS types and versions

3. Supported compute platforms (i.e. CPU Architectures, SBC vs. workstation etc.)

4. Average release lifetime

5. Number of supported robots, mobile bases, sensors etc.

6. Bus systems or network protocols supported

4.2.2 Final set of “social” criteria

The following set of final “social” requirements have been identified:
3. Number of active developers

4. Number of scientific publication referencing / using middleware

5. Number of university courses using a middleware for exercises or as main topic

6. Number of commercial entities openly supporting the middleware or offering drivers etc.

7. Does an active governance body exist?

8. Are contribution guidelines / processes well defined?

9. How does quality assurance work?

10. Does a defined QA process exist?

a. For core parts?

b. For components?

4.3 Selection of the common middleware framework

For the final selection of a common middleware, we developed a scorecard based on the
previously identified criteria. The criteria were further grouped in categories and their importance
was defined on the scale F0 to F4 and “informative” for criteria that either can’t be quantified or
where the quantified value does not directly bear meaning or comparability towards the goal of
ranking the frameworks. Some criteria have been reworded or merged together for practical
reasons in the process. The importance scale is defined in Table 3 and Error! Reference source not
found. shows the score card.

Table 3 importance scale for selection criteria.

F0 Excluding criteria, if not given no candidate

F1
Strongly needed, if more than 5 not given, no
candidate

F2 Needed

F3 Wanted

F4 Nice to have

(Informative) Data that informs other criteria or is not directly

FP3 IAM4RAIL - GA 101101966 43 | 118 Interne

usable to compute an overall score.

The final selection of the common middleware framework took place in a technical online meeting
of all relevant partners on May 30th, 2023.

FP3 IAM4RAIL - GA 101101966 44 | 118 Interne

Table 4 - Selection criteria organized into a scorecard to rank different frameworks.

Based on a review of the defined criteria and the corresponding match of candidate frameworks,

criterion class criterion Importance

Performance of middleware (not applicable)

Data throughput and latency (Informative)

OS support (not applicable)

Linux F0

--Linux Distributions (Informative)

Windos F3

MacOS F3

Architecture support (not applicable)

X86_64 F0

Arm F0

GPU accelleration F1

mCU F4

Relase criteria (not applicable)

Apllications run unchanged for 5+ years F0

--Middleware Release lifetime (Informative)

--Middleware release mode (Informative)

Hardware support

Supports multiple robor arms F2

Supports multiple sensor classes F2

Supports multiple mobile bases F4

Number of maintained driver components (Informative)

Number of vendor-maintained driver components (Informative)

Communication support (not applicable)

Canbus F2

Ethercat F3

TCP/IP F2

Reliable communication F1

Lattency / Throughput controll F3

Tamper resistence (IT-Secutity) F2

Peer-to-Peer component communication F1

Dynamic rewiring (fault tolerancy) F2

Software quality & Governance (not applicable)

Defined project governance rules F3

Defined contribution guidelines F4

Defined Quality assurance rules F4

Quality of core parts F1

--Public CI pipeline for core parts? (Informative)

Quality of ecosystem parts F3

--Public CI pipeline for ecosystem parts? (Informative)

Core actively maintained F1

--mumber of open core issues (Informative)

--average time until core issues are closed (Informative)

--active committer in last 12 months (Informative)

Number of vendors supporting components (Informative)

FP3 IAM4RAIL - GA 101101966 45 | 118 Interne

existing experiences with frameworks (ROS and FiWare), and long-term maintainability
considerations as well as short term considerations regarding timely implementation of the
project’s demonstrators, the participating parties unanimously opted for ROS2 as the common
framework.

A partially completed version of the table 4 is available in appendix B. We were able to collect
information on all middleware for just 3 criteria. Other information is not directly accessible (for
example in the online available documentation). Searching those elements require a time-
consuming work. To optimize our limited resource, we have chosen the middleware whose
characteristics were best known and which, as we've already said, is the most used by the partners.

4.3.1 Justification for selecting ROS2

Primary selection reason is the high score in the “social” criteria. ROS2 has by far the largest
commercial support from all surveyed frameworks. It is the de-facto standard framework in
academia and used in the majority of all practical robotics university courses. It is the framework
of choice in the international RoboCup competitions.
Commercial use is backed by the ROS-Industrial consortium, an association of robot system
provider, sensor providers and automation equipment providers. The European branch of the
ROS-Industrial consortium has 32 members (as of 2022) from hard- and software providers to end-
users applying ROS in their daily business operation. The European, American and Asia/ Pacific
consortia combined have 85 member organisations1. The statistics page of ROS lists almost 2,500
packages2 as of June 2023 and over 70,000 visits to the packages index in that month.
The core components are all Open-Source Software under a permissive licence, usually BSD or MIT
and available on GitHub3. It has a vibrant international developer community with regular
developer events like the regional ROSCon conferences, online meetups and a defined Governance
structure4. The overall ROS project steering rest with the Technical Steering Committee (TSC),
while specific technical topics are discussed in Working Groups. The process to join the TSC as well
as the process to initiate new Working Groups is publicly described. Contributing guidelines
support and welcome new developers and new ideas for enhancing ROS for everyone5.
On the technical side, its main target platform is Ubuntu Linux with its five years stable LTS (Long
Term Support) releases. ROS itself is release more frequently in so-called ROSDistros, collections
of package versions that match each other. The current ROS2 latest release is called “Iron Irwini”
and has been released May 23rd, 2023. The current stable LTS release is “Humble Hawksbill” and
will be supported until May 2027. The next LTS release would be expected in early 2026, providing
for one year overlap, although no release date has been fixed so far. As ROS runs on top of Linux,
it runs on the same wide set of hardware architectures as Linux, although some packages with

1 https://rosindustrial.org/ric/current-members
2 https://metrics.ros.org/repos_table.html
3 ROS-Industrial repositories: https://github.com/ros-industrial
 General ROS repository overview: https://github.com/ros/
4 https://docs.ros.org/en/iron/The-ROS2-Project/Governance.html
5 https://docs.ros.org/en/iron/The-ROS2-Project/Contributing.html

https://rosindustrial.org/ric/current-members
https://metrics.ros.org/repos_table.html
https://github.com/ros-industrial
https://github.com/ros/
https://docs.ros.org/en/iron/The-ROS2-Project/Governance.html
https://docs.ros.org/en/iron/The-ROS2-Project/Contributing.html

FP3 IAM4RAIL - GA 101101966 46 | 118 Interne

special hardware requirements may not be available on all platforms. For example, in June 2023
about 10% of package downloads were for the ARM architecture. Ports for MacOS and Microsoft
Windows exist. The main target platform of (Ubuntu) Linux and the long-term support matches
our requirements in IAM4RAIL. ROS2 supports all major communication protocols needed,
including plain TCP/IPA, EtherCAT, DDS and CANOpen.
All partners in the consortium involved in software development for the demonstrators have prior
knowledge in ROS (although not have experience with the specific differences of ROS2).

FP3 IAM4RAIL - GA 101101966 47 | 118 Interne

5 Conclusions

Within the wider IAM4RAIL project, WP18 aims at introducing robotic solutions to maintenance
and service tasks within the railway ecosystem. Introducing specialized robotic solutions is only
economically viable, if there is a sufficiently large market for such robot systems to justify the
development costs for robot system providers, and if the productivity gain in the railway system
justifies the total cost of ownership for such robotic systems. It is well known that standardisation
and a component-based approach to robot system design can significantly reduce development
time and costs, while simultaneously enhancing robustness, maintainability and potentially ease
the certification process. Therefore, and to support interoperability across the railway sector,
WP18.1 aims at enabling development of robotics systems in the railway sector around a common
development and component framework.

This work, Task 18.1.1, was aimed at identifying an existing robotic software framework, which
can be used as such a common development and component framework. A consensus had to be
reached on which framework to use throughout the project’s demonstrators. A key feature
needed for any such framework is significant support from relevant hardware vendors (robot
arms, mobile bases and all sorts of sensor and actuators) and a very high probability to be still
around and well maintained in 10+ years.

We employed a three-step process to select a common framework: First we conducted a survey
about existing development frameworks in robotics. Second, we derived metrics to describe and
compare these frameworks and defined our own project’s requirements for the common
framework. Third, throughout multiple online sessions with all relevant stakeholders in the
project, we developed a common understanding of our requirements and the matching
frameworks.

The survey covered 34 frameworks, of which 11 were shortlisted for further discussion, after
filtering for must-have requirements like package management or active development.
Discussions with relevant stakeholders in the project showed the high priority of “social” criteria
like widespread vendor support, large developer/supported base and clearly defined project
governance. These three criteria left only ROS 2 as a viable candidate.

We verified that ROS 2 will meet our defined technical requirements, too. The only technical
shortcoming of ROS2, not having built-in support for modern model-driven development methods
or “advance modularity” concepts, can be mitigate using third party add-ons, like the RosTooling
developed at project associate partner Fraunhofer IPA.

With the unanimous decision for ROS 2, this task has achieved its planned objective.

FP3 IAM4RAIL - GA 101101966 48 | 118 Interne

6 References

• Iborra, A., Caceres, D. A., Ortiz, F. J., Franco, J. P., Palma, P. S., & Alvarez, B. (2009). Design of

service robots. IEEE Robotics & Automation Magazine, 16(1), 24-33.

• Sanchez-Lopez, J. L., Pestana, J., De La Puente, P., & Campoy, P. (2016). A reliable open-source

system architecture for the fast designing and prototyping of autonomous multi-uav systems:

Simulation and experimentation. Journal of Intelligent & Robotic Systems, 84, 779-797.

• Vahrenkamp, N., Wächter, M., Kröhnert, M., Welke, K., & Asfour, T. (2015). The robot software

framework armarx. it-Information Technology, 57(2), 99-111.

• Magnenat, S., Longchamp, V., & Mondada, F. (2007). ASEBA, an event-based middleware for

distributed robot control. In Workshops and tutorials CD IEEE/RSJ 2007 international conference on

intelligent robots and systems (No. CONF). IEEE Press.

• Basu, A., Bensalem, B., Bozga, M., Combaz, J., Jaber, M., Nguyen, T. H., & Sifakis, J. (2011).

Rigorous component-based system design using the BIP framework. IEEE software, 28(3), 41-48.

• Kim, H., Cho, Y. J., & Oh, S. R. (2005, June). CAMUS: A middleware supporting context-aware

services for network-based robots. In IEEE Workshop on Advanced Robotics and its Social Impacts,

2005. (pp. 237-242). IEEE.

• Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., & Das, H. (2001, March). The CLARAty

architecture for robotic autonomy. In 2001 IEEE Aerospace Conference Proceedings (Cat. No.

01TH8542) (Vol. 1, pp. 1-121). IEEE.

• Domínguez-Brito, A. C., Hernández-Sosa, D., Isern-Gonzalez, J., & Cabrera-Gámez, J. (2007).

Coolbot: A component model and software infrastructure for robotics. Software Engineering for

Experimental Robotics, 143-168.

• Arancón, M. M., Montano, G., Wirkus, M., Hoeflinger, K., Silveira, D., Tsiogkas, N., ... & Muhammad,

A. (2017, June). ESROCOS: a robotic operating system for space and terrestrial applications. In 14th

Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA 2017) (pp. pp-

1).

• Niemueller, T., Ferrein, A., Beck, D., & Lakemeyer, G. (2010). Design principles of the component-

based robot software framework fawkes. In Simulation, Modeling, and Programming for Autonomous

Robots: Second International Conference, SIMPAR 2010, Darmstadt, Germany, November 15-18,

2010. Proceedings 2 (pp. 300-311). Springer Berlin Heidelberg.

• Fleury, S., Herrb, M., & Chatila, R. (1997, September). G/sup en/oM: a tool for the specification and

the implementation of operating modules in a distributed robot architecture. In Proceedings of the

1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for

Real-World Applications. IROS'97 (Vol. 2, pp. 842-849). IEEE.

• Côté, C., Létourneau, D., Michaud, F., Valin, J. M., Brosseau, Y., Raievsky, C., ... & Tran, V. (2004,

September). Code reusability tools for programming mobile robots. In 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 2, pp. 1820-

1825). IEEE.

• SCHOLL, K., & DILLMANN, R. (2001). M SUZUKI. Climbing and Walking Robots: From Biology to

Industrial Applications (CLAWAR 2001), 443.

• Utz, H., Sablatnog, S., Enderle, S., & Kraetzschmar, G. (2002). Miro-middleware for mobile robot

applications. IEEE Transactions on Robotics and Automation, 18(4), 493-497.

• Benjamin, M. R., Schmidt, H., Newman, P. M., & Leonard, J. J. (2010). Nested autonomy for

unmanned marine vehicles with MOOS‐IvP. Journal of Field Robotics, 27(6), 834-875.

FP3 IAM4RAIL - GA 101101966 49 | 118 Interne

• Paunicka, J. L., Mendel, B. R., & Corman, D. E. (2001, June). The OCP-an open middleware solution

for embedded systems. In Proceedings of the 2001 American Control Conference.(Cat. No.

01CH37148) (Vol. 5, pp. 3445-3450). IEEE.

• Calisi, D., Censi, A., Iocchi, L., & Nardi, D. (2008, September). OpenRDK: a modular framework for

robotic software development. In 2008 IEEE/RSJ International Conference on Intelligent Robots and

Systems (pp. 1872-1877). IEEE.

• Han, S., Kim, M. S., & Park, H. S. (2012). Open software platform for robotic services. IEEE

Transactions on Automation Science and Engineering, 9(3), 467-481.

• Brooks, A., Kaupp, T., Makarenko, A., Williams, S., & Oreback, A. (2005, August). Towards

component-based robotics. In 2005 IEEE/RSJ International Conference on Intelligent Robots and

Systems (pp. 163-168). IEEE.

• Brooks, A., Kaupp, T., Makarenko, A., Williams, S., & Orebäck, A. (2007). Orca: A component model

and repository. Software engineering for experimental robotics, 231-251.

• Mizukawa, M., Matsuka, H., Koyama, T., Inukai, T., Noda, A., Tezuka, H., ... & Otera, N. (2002,

August). ORiN: open robot interface for the network-the standard and unified network interface for

industrial robot applications. In Proceedings of the 41st SICE Annual Conference. SICE 2002. (Vol.

2, pp. 925-928). IEEE.

• Bruyninckx, H. (2001, May). Open robot control software: the OROCOS project. In Proceedings 2001

ICRA. IEEE international conference on robotics and automation (Cat. No. 01CH37164) (Vol. 3, pp.

2523-2528). IEEE.

• Bruyninckx, H., Soetens, P., & Koninckx, B. (2003, September). The real-time motion control core of

the Orocos project. In 2003 IEEE international conference on robotics and automation (Cat. No.

03CH37422) (Vol. 2, pp. 2766-2771). IEEE.

• Saffiotti, A., & Broxvall, M. (2005, October). PEIS ecologies: Ambient intelligence meets autonomous

robotics. In Proceedings of the 2005 joint conference on Smart objects and ambient intelligence:

innovative context-aware services: usages and technologies (pp. 277-281).

• Gerkey, B., Vaughan, R. T., & Howard, A. (2003, June). The player/stage project: Tools for multi-

robot and distributed sensor systems. In Proceedings of the 11th international conference on

advanced robotics (Vol. 1, pp. 317-323).

• Petters, S., Thomas, D., & Kiener, D. M. J. (2005). RoboFrame-Softwareframework für mobile

autonome Robotersysteme. TU Darmstadt Diplomarbeit.

• Joyeux, S., & Albiez, J. (2011, May). Robot development: from components to systems. In 6th

National Conference on Control Architectures of Robots (pp. 15-p).

• Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... & Ng, A. Y. (2009, May). ROS:

an open-source Robot Operating System. In ICRA workshop on open source software (Vol. 3, No.

3.2, p. 5).

• Thomas, D. (2014). ROS Documentation. Open Source Robotics Foundation.

• Wienke, J., & Wrede, S. (2011, December). A middleware for collaborative research in experimental

robotics. In 2011 IEEE/SICE International Symposium on System Integration (SII) (pp. 1183-1190).

IEEE.

• Yoo, J., Kim, S., & Hong, S. (2006, October). The robot software communications architecture

(RSCA): QoS-aware middleware for networked service robots. In 2006 SICE-ICASE International

Joint Conference (pp. 330-335). IEEE.

• Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., & Yoon, W. K. (2005, August). RT-middleware:

distributed component middleware for RT (robot technology). In 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems (pp. 3933-3938). IEEE.

FP3 IAM4RAIL - GA 101101966 50 | 118 Interne

• Schlegel, C., & Worz, R. (1999, October). The software framework SMARTSOFT for implementing

sensorimotor systems. In Proceedings 1999 IEEE/RSJ International Conference on Intelligent

Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional

Quotients (Cat. No. 99CH36289) (Vol. 3, pp. 1610-1616). IEEE.

• Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., & Tsagarakis, N. G. (2017,

April). Xbotcore: A real-time cross-robot software platform. In 2017 First IEEE International

Conference on Robotic Computing (IRC) (pp. 77-80). IEEE.

• Metta, G., Fitzpatrick, P., & Natale, L. (2006). YARP: yet another robot platform. International Journal

of Advanced Robotic Systems, 3(1), 8.

FP3 IAM4RAIL - GA 101101966 51 | 118 Interne

PART B – ADAVANCED

MODULARITY

FP3 IAM4RAIL - GA 101101966 52 | 118 Interne

1 Executive Summary

Objective:
The need to develop modular robots for railway maintenance was outlined in the middleware
selection document. This selection corresponds to subtask 18.1.1 of FP3 - IAM4RAIL WP18.
We remind you that the choice was made for ROS2.
The primary function of middleware is to orchestrate data exchanges between softwares
operating within a system. This makes possible the breakdown of a complex algorithmic task into
a set of elementary tasks. And the more elementary a task, the greater its potential for reuse in a
variety of contexts. Middleware is therefore the essential component that guarantees software
modularity. But the freedom offered by middleware in data exchange can be so extensive that it
can run counter to industrial interests, for whom constraints on costs, development time and
product quality are strong.
Objective of the work in task 18.1.2 “Overlay for Advanced Modularity” is to choose or to develop
a set of tools on top of the common selected middleware to make the reuse (from robot to robot)
of software components easy, fast, and reliable. The set of tools for robot’s design or support
(maintenance) we’re looking for must therefore restrict the possibilities offered by middleware,
without restricting the capacity of elementary software components or imposing an over-rigid set
of rules on developers.

The purpose of this document is to define the main functionalities expected to guarantee simple,
fast, and reliable reuse of software components. The technical means to be used to create these
functions will be proposed. The impact of their use on developers needs to be assessed.
The aim is twofold: to show that the projected situation will remain acceptable to developers, and
to predispose the developments undertaken as part of this workpackage to the advanced
modularity tools that will be developed in parallel.

Methodology:
This document presents the results of cooperative work carried out either physically or online
between the participants in this task within WP18.
The starting point was a more precise, but still high-level, formulation of the concepts we wanted
to see developed under the term advanced modularity (chapter 6 of this document).

Subsequently, a corpus of basic software tools was elaborated. It is through the application of a
tool or combination of tools that concepts can be materialized. Relationships "Concepts/Tools”
are shown in Appendix C.
We also set out to describe:

1. the nature of the activities we intend to carry out for each tool in the project;

2. the benefits of these tools for the various stakeholders involved: manufacturers, integrators,

end users.

Conclusion:
From the general “advanced modularity” concept, we have established a list of sub-concepts

FP3 IAM4RAIL - GA 101101966 53 | 118 Interne

detailing our expectation (chapter 6). Then those sub-concepts have been transformed into a first
set of 11 software tools (chapter 7). Most of the tools we propose to develop will benefit from
work previously carried out by Fraunhofer IPA. This minimizes our development effort while
maximizing our chances of success.

Our development efforts will focus on 8 tools (data structure for both component and system,
related data base, component properties extractor and visualizer, a tool to model an assembly of
components (robot), a tool that automatically generates code and finally a tool for checking
incompatibilities and missing information in a system model).
For 2 tools (automatic documentation generation, code quality check), we will test existing
solutions and make recommendations for use and/or further development.
For one last tool (tool that creates the robot’s software distribution from its model), we will draw
up recommendations for future developments.

The corpus will be a first set of Model Design Engineering tools with a strong impact on product
quality and development productivity. Beyond the scope of the project, efforts will have to be
continued to expand this set (e.g. moving the system's data structure from the "logical" scale to
the "physical" scale, then to the mechanical scale) or by undertaking work on tools that are not
yet covered (software distribution tool).

The tools that generate constraints to developers have been identified. We have endeavoured to
limit this number. The precise list of constraints will be known in January 2024, following the
completion of a study conducted at the University of Stuttgart with the help of students.

FP3 IAM4RAIL - GA 101101966 54 | 118 Interne

2 Abbreviations and acronyms

Abbreviation / Acronym Description

API
An Application Programming Interface is a software interface

allowing software to communicate with each other.

ARM

Advanced RISC Machines (and originally Acorn RISC Machine)

is a family of RISC instruction set architectures for computer

processors. A reduced instruction set computer (RISC) is a

computer architecture designed to simplify the individual

instructions given to the computer to accomplish tasks

CPU

A central processing unit (CPU) is the most important processor

in a given computer. Its electronic circuitry executes instructions

of a computer program, such as arithmetic, logic, controlling, and

input/output (I/O) operations.

DSL

A domain-specific language (DSL) is a computer language

specialized to a particular application domain. This is in contrast

to a general-purpose language (GPL), which is broadly applicable

across domains.

Fiware Middleware - similar to ROS and ROS2

GPU

A graphics processing unit (GPU) is a specialized electornic

circuit deisgned to accelerate image processing and computer

graphics. It’s more and more used for non-graphical parallel

calculations.

Ignition Ignition is a simulator for robotics.

IOT Internet of Things

LTS

Long-term support (LTS) is a product lifecycle management

policy in which a stable release of computer software is

maintained for a longer period of time than the standard edition.

MBSE
MBSE is a technical approach to systems engineering that focuses

on creating and exploiting models.

MDE Model Driven Engineering

Node A node is a process of a package that performs computation.

OS

An operating system (OS) is system software that manages

computer hardware and software resources, and provides common

services for computer programs.

OSRF

OSRF is a Non-profit Public Benefit Corporation. Its mission is

to support the development, distribution, and adoption of open

source software for use in robotics research, education, and

product development.

Package

The ROS packages are the most basic unit of the ROS software.

It contains the ROS runtime process (nodes), libraries,

configuration files, and so on, which are organized together as a

single unit. Packages are the atomic build item and release item in

the ROS software.

RGB
The RGB model is a very usual model for colours decomposition.

It assumes that each colour is a combination of 3 colour channels

FP3 IAM4RAIL - GA 101101966 55 | 118 Interne

(Red, Green, Blue).

ROS

Robot Operating System

A collection of tools, software libraries and common practices to

build sophisticated robot control software from reusable building

blocks and a powerful communication layer. The de-facto

standard in academia for robot software development.

ROS2
Version 2 of ROS, addressing most of ROS’ architectural and

cyber-security shortcomings.

RPA

The Robot Process Automation is a branch of Artificial

Intelligence dedicated to data manipulation (automatic filling of

forms, database…)

RQT
RQT is a software framework of ROS that implements the various

GUI tools in the form of plugins.

RVIZ2 3D visualization tool for ROS2

Service
Services are named buses over which nodes exchange

synchronised messages (one to one communication)

Topic

Topics are named buses over which nodes exchange messages.

Topics have anonymous publish/subscribe semantics, which

decouples the production of information from its consumption

(one to many communication). In general, nodes are not aware of

who they are communicating with.

URDF

The Universal Robot Data Format is an XML type language used

in ROS/ROS2 to describe the robot mostly from the kinematical

point of view.

V-cycle

The V-cycle or V-model is a graphical representation of a systems

development lifecycle. The left side of the "V" represents the

decomposition of requirements, and the creation of system

specifications. The right side of the "V" represents an integration

of parts and their validation.

VS-CODE

Microsoft's cross-platform development tool. This is probably the

main text editor used by developers, at least in the ROS

community.

X86
x86 is a family of complex instruction set computer (CISC)

instruction set architectures.

XACRO

XACRO is an XML type language used in ROS/ROS2 to

introduce flexibility (through parameters, conditional

instructions…) in the URDF models.

XML

Extensible Markup Language is a markup language and data

format for storing arbitrary data. It defines a set of rules for

encoding information in a format that is both readable by human

and machine.

Xtext
Open-source software framework for developing programming-

languages and domain-specific-languages.

YAML

YAML is a human-readable data serialization language,

commonly used for configuration data. It targets many of the same

applications as XML but has a minimal syntax.

FP3 IAM4RAIL - GA 101101966 56 | 118 Interne

3 Objective/Aim

The need to develop modular robots for railway maintenance was outlined in the middleware
selection document. This selection corresponds to subtask 18.1.1 of FP3 - IAM4RAIL WP18.
We remind you that the choice was made for ROS2.
The primary function of middleware is to orchestrate data exchanges between software operating
within a system. This makes possible the breakdown of a complex algorithmic task into a set of
elementary tasks. And the more elementary a task, the greater its potential for reuse in a variety
of contexts. Middleware is therefore the essential component that guarantees software
modularity. But the freedom offered by middleware in data exchange can be so extensive that it
can run counter to industrial interests, for whom constraints on costs, development time and
product quality are strong.
Objective of the work in task 18.1.2 “Overlay for Advanced Modularity” is to choose or to develop
a set of tools on top of the common selected middleware to make the reuse (from robot to robot)
of software components easy, fast, and reliable. The set of tools we’re looking for must therefore
restrict the possibilities offered by middleware, without restricting the capacity of elementary
software components or imposing an over-rigid set of rules on developers.
The use of the term middleware overlay is somewhat abusive. In robotics, the data communication
layer (pure middleware) is not provided on its own. A set of elements ranging from development
tools to a corpus of first elementary components accompanies this core function. The advanced
modularity tools we’re talking about are not directly linked to core functionality. They complete
the range of development tools. As a result, few of those elements will be active directly on the
robots. They will be used in the design or support (maintenance) phases.
We’ve used the term advanced modularity to highlight the benefits of these tools. In the scientific
and technical community, they are grouped under the term “Model Driven Engineering” (MDE).
This term highlights the means rather than the end. Please note, however, that while we'd like to
adapt some of the tools in the MDE approach, we don't want to impose the entire approach on
developers.
The purpose of this document is to define the main functionalities expected to guarantee simple,
fast, and reliable reuse of software components. The technical means to be used to create these
functions will be proposed, in order to assess the impact, they will have on developers.
The aim is twofold: to show that the projected situation will remain acceptable to developers, and
to predispose the developments undertaken as part of this workpackage to the advanced
modularity tools that will be developed in parallel.

FP3 IAM4RAIL - GA 101101966 57 | 118 Interne

4 Methodology

While the adjective "advanced" that we have attached to the noun "modularity" does indeed
express an intention, it is, like other terms in widespread use today (smart, green, etc.) very
imprecise. Through online group sessions in the spring of 2023, we clarified the concept we
attached to the term advanced modularity. The overall concept has been broken down into sub-
concepts.

This was the starting point for a second phase in a core group, during which the technical elements
to support the concepts were established. We relied as much as possible on elements already
developed by Fraunhofer IPA for its own needs or as part of previous European or national
projects.

The residual effort required to develop the elements has been evaluated. It has been compared
with a level of desirability in order to retain what it will be concretely possible to develop within
the framework of FP3 - IAM4RAIL WP18.

Finally, the constraints on developers were explained. On the one hand, it was a question of
validating that our choices did not result in a corpus of rules that was too rigid or too voluminous.
On the other hand, it was a question of informing WP18 developers so that they could predispose
their software.

Figure 3 - Principal working steps

The remainder of this document will describe these 4 stages.

FP3 IAM4RAIL - GA 101101966 58 | 118 Interne

5 Clarification of the concept of advanced modularity

Before going into detail on the various sub-concepts or characteristics that define the notion of
advanced modularity, we need to specify the level at which we intend to manage modularity.
Modularity can be managed at several levels: that of the system (a robot) or that of a system of
systems (a fleet of robots, a robot in an environment of connected objects...). We choose to deal
with the problem at the system level. The aim is to reduce the level of complexity and the
resources required to achieve tangible results.
All the ideas we are going to develop will both increase the quality of the resulting product and
reduce development time. But all have a particular tropism for the first or the second criterion.
The partners in this workpackage are mainly end-users. In addition, given the high safety
requirements of the rail sector, particular attention will be paid to what can be done to raise
quality.
To these 2 types (quality and pure productivity) we need to add 2 other types, which is support
for the business model and live support.
In the following we list several aspects of this Advanced Modularity and the tool support we
envision for it. It must be noted, that when we talk about “the advanced modularity tool” or
similar in the following, we do not mean one single tool delivering all of the aspect listed in 6.1 to
6.4. One highly integrated tool would be too complex to manage. Instead, we envision having
multiple, loosely coupled tools that contribute to one or two of the requirements each and that
can be combined as needed.

5.1 Quality

5.1.1 from "we can talk" to "we understand each other"

In order to describe our vision of this subconcept, it seems important to us to evoke our experience
of the use of robots' components, and in particular of software components. First of all, we have
to say that our practice is based on the ROS or ROS2 middleware. As already mentioned, the main
reason for the existence of those middleware is precisely modularity. If we address only the strict
technical point of view, all ROS/ROS2 components can be reused and connected to other
components (if that makes sense). This extreme freedom offered by ROS/ROS2 is not, however,
what we would like to see classified under the term advanced modularity.
Indeed, behind this infinite potential are hidden real operational difficulties. The key to the vast
library of ROS/ROS2 components (we are talking here about components directly managed by
OSRF but also all components developed by third parties) is a block diagram. The inputs, outputs
(with specific types for both) and main function are known, while the details of the
implementation can be hidden.
This information about interfaces and general function is obviously necessary, but it is far from
being sufficient in an industrial context. What is the validity domain of the function? For what
range of variation, quality, frequency of update of the input data? What level of accuracy do we
have on the output data?
This is for us the fundamental notion of the concept of advanced modularity: components carrying
elementary functionalities must be able to be reused in large contexts but the "contracts" binding

FP3 IAM4RAIL - GA 101101966 59 | 118 Interne

these components must be clarified. The components should not just be able to talk to each other.
We have to make sure they understand each other.

5.1.2 To an automated matching process

Paper documentation of requirements and capabilities would be one way to meet the need
expressed in the previous paragraph. Given the volume of criteria to be studied, the risk of error
during the examination process will remain high. This pleads for an automation of this matching
process, as well as the frequency of the reviews. We know that software is generally subject to
frequent updates.

5.1.3 Configuration management

Configuration management is an essential part of the safety management. It is not enough to say
that this or that software brick is compatible with this or that other brick. This must be managed
at the version level. This can also be managed off-line or live with software directly on the robots.
If the offline situation needs to be managed quickly, the second case, which corresponds to
installed configuration management, seems to be a second, deferred stage.

5.1.4 Complexity management

The advanced modularity tool must help us to detect the software components that are too
complex:

• no clear separation between elementary functions

• poorly formulated code

• presence of memory leaks

• possible endless loop

• bad memory management (unnecessary copies of variable in memory…)

• too many nested loop

• poor documentation of the code

• too many variables

• …

5.2 Pure productivity

5.2.1 To automated links

In the follow-up of the automatic matching (see 6.1.2), an automated code generation to link the
nodes and launch the resulting combination will be greatly appreciated because this activity does
not really generate added value. On the other hand, the work that this represents can be, if it is
done manually, a source of many errors and demotivation for the developers.

5.2.2 Automated code generation

FP3 IAM4RAIL - GA 101101966 60 | 118 Interne

Automated code generation may concern other fields than the links between the packages. For
example runtime monitoring code or automated failure recovery, e.g., restarting failed nodes or
launching additional ones for load balancing.

5.2.3 More visual tools

ROS2 is an extraordinary tool. However, it is sorely lacking in visual tools. Reducing the level of
expertise required in the assembly process by using graphical tools opens up the ecosystem to the
benefit of both technology providers and end users.
These graphic tools can be used in a wide range of design phases. Here are the priority fields (not
covered by the tools in ROS2 or not covered satisfactorily) that have been identified:

• design of software components (nodes as well as packages);

• managing of configuration parameters;

• design of the software system architecture and data flow;

• visualise the parameters of the components;

• visual representation of deployment structure, i.e., which software part runs and where.

5.2.4 Modularity for safety demonstration

In addition to the acceleration and reduction of development costs, there is another element that
can shed light on the notion of advanced modularity. We want to move towards modular robotics.
To take full advantage of the approach, modularity must also be applicable to the field of safety
demonstration. If a single technical component of a robot has to be replaced, and such
replacement requires to perform the safety demonstration from scratch, this will have a major
impact on the time and cost of bringing the product to market. This will also reduce the market’s
openness to multiple players.
The concept of contract mentioned above must include the meta-data related to probate. A tool
that would manage the level of safety demonstration resulting from the assembly of several "pre-
approved" components would be an undoubted plus. By "pre-approved" component, we expect a
component for which approval work has been carried out at the elementary level (at the bottom
of the V-cycle if we refer to this design process).
NOTE: the availability of graphical tools (see 5.2.3) for modelling the robotic system can also create
synergies with MBSE-type safety approaches.

5.2.5 Compatibility mapping

The next item is quite close to the previous one. The tool must be able to indicate the compatibility
between 2 components designated by a user. The same basic functionality could be used to
establish a global mapping of the compatibility level between all the components of the platform.
This can allow the creation of associations not initially envisaged or to enrich areas where too
many dependencies exist.

5.2.6 Separation of concern

FP3 IAM4RAIL - GA 101101966 61 | 118 Interne

Our tool must avoid too much discussion between the different roles. A component supplier must
be able to offer a generic product, he must not adapt it in a very precise way to the need of a single
other component.

5.3 Support for the business model

5.3.1 Remuneration mechanism

For the time being, we approach our ecosystem from a rather technical point of view, but it will
only be viable in the long term if it is economically viable. Some components of the platform will
have to be paid for. The contract mechanism mentioned earlier can probably be used to develop
and monitor the developer remuneration mechanism.

5.3.2 Propagation of licenses

In the same way, it can probably be useful to better evaluate the propagation of licenses (and
especially open-source licenses).

5.4 Live Support

5.4.1 Online monitoring

The tool we are talking about must allow us to manage contracts between the components of our
system. It can happen in the life of the system that we enter into degraded modes that take us
away from the approval conditions. We can either try to do everything so that the system never
moves away from the nominal. This can lead to a drastic increase in the acquisition cost of the
system or its maintenance cost. If we can make the system self-diagnose its state and signal the
moments when it goes out of its certification domain, this can open the door to other management
modes. So far we have talked about contracts in the context of design. We could therefore benefit
from a tool whose contract management module could also work "live".

FP3 IAM4RAIL - GA 101101966 62 | 118 Interne

6 Technical elements required for our advanced modularity

In the previous section, we developed our definition of "advanced modularity". We now turn to
the technical elements on which we propose to base our concept. In the Appendix C, we present
a transposition matrix between the sub-concepts of the chapter 6 and the technical elements of
this chapter. It illustrates the contribution of the different technical elements to the different
“advanced modularity” sub-concept.

Figure 4 - Tools and their effect

The Figure 2 above positions the tools in relation to 2 (quality and productivity) of the 4 dimensions
mentioned in the previous chapter. We have made this choice to simplify the graphic
representation, but effects are expected on the other 2 dimensions (live support and business
model support). Before going into detail about the tools, we need to identify some of the
stakeholders in the ecosystem and the role they will play. The use to which the tools might be put
can indeed vary according to these roles:

1. End users: entities carrying out maintenance on behalf of or within railway companies

(infrastructure managers or railway operators)

2. Integrators: the name integrator is traditionally used in the manufacturing industry. That's why

we use it, even though it only partially reflects reality in the maintenance sector. In our sector,

integrators are more likely to be assemblers, using components of various origins to form

robots. End-users are more likely to be responsible for integrating robots into their

maintenance production processes.6

3. Manufacturers: this term designates the companies (robotics technology suppliers) that

develop the elementary components - hardware or software - that constitute robots.

6 Some railways may wish to set up entities with the capacity to take on this role.

FP3 IAM4RAIL - GA 101101966 63 | 118 Interne

6.1 Data structure for system component properties

In the context of modular software, it is important to design an effective data structure for system
component properties. It cannot simply be a matter of putting the main characteristics (also
known as metadata) of the component one after the other. This would make modelling and data
processing tedious and cumbersome. This data structure must therefore make it possible to
efficiently link the outputs of one component with the inputs of the next, with a view to matching
phase.
The data structure should be capable of accommodating values of different data types, including
integers, strings, booleans, arrays, or objects. This flexibility makes it easier to work with and
interpret the properties.
These properties will be extremely varied in nature. It may concern the type of measurement
provide by sensors (image, point cloud, georeferenced coordinates, velocity vector, etc.), or details
of this type (e.g. for an image: RGB, coded on 8 bits per colour channel, width, height, flux,
reference frame, optical defects corrected or not...), validity ranges of input or output elements
(e.g. min width, max width), requirements other than those based on characteristics (e.g. requires
a specific brand or model of Lidar).
In the industry we can find many efforts to get a standard. One important example has been done
by the Fiware7 community. Fiware is an open-source platform that provides a set of APIs
(Application Programming Interfaces), standards, and data models for the development of smart
applications in various domains such as Smart Cities, Smart Industry, Smart Agrifood, and more. It
offers a framework for the development of smart solutions by enabling easy integration of
different components and services. In term of data structure, Fiware provides the smart data
models8 that are standardized data structures that represent commonly used concepts and
entities in the context of the Internet of Things (IoT) and smart applications. There are examples
of smart data models of almost every IoT device we can imagine.
We intent to reuse a data structure already used by Fraunhofer IPA on other internal, national or
European projects. It is based on a Xtext DSL already described in the literature9
[ROSMetamodeling]. This will be used to describe the Meta-Models. It will have tool support to
ensure that any concrete component instance model conforms to the meta-model. The
component model will include different types of properties, such as properties concerned with
interconnection, properties concerned with domain of operation, properties concerned with
configurability and more. The meta-model respective DSL will be aimed at both human and
machine readability and geared towards support for automated model validation.
For practical reasons, we will likely define individual models per type of properties and a structured
way to link or reference this individual models. Such a set of individual models better facilitates
the desired separation of concerns between different stakeholders or ecosystem roles.
This structure will be use within the project to describe the developed components. This large-
scale test will highlight any weak points or additions to be made. The great flexibility of the
technical solution will enable us to manage a wide variety of situations, even if not all have been

7 https://www.fiware.org/
8 https://www.fiware.org/smart-data-models/
9 https://ieeexplore.ieee.org/document/8675668 Bootstrapping MDE Development from ROS Manual Code - Part 1:
Metamodeling

https://ieeexplore.ieee.org/document/8675668

FP3 IAM4RAIL - GA 101101966 64 | 118 Interne

anticipated at this stage.
This is a point which mainly concerns manufacturers. We have to be extremely careful to export
as few constraints as possible to manufacturers, if we want to benefit from the widest possible
range of technologies. This is all the truer given the bigger variable size of the players involved.
This data structure in itself will not export any constraint to manufacturer.

6.2 Component properties database

The structure defined in the previous section must be fitted in a database to monitor and control
the system. When selecting an appropriate database, several constraints need to be considered:
First, different component properties have distinctive life cycles. We have:

• Static properties defined by the component manufacturer.

These are properties describing invariant characteristics of the component, that do not

depend on the application context

• Semi-static component properties defined by the component manufacturer and set by the

integrator.

These are properties that are fixed at system design time by the system integrator and do

not change at deployment or runtime.

• Dynamic properties defined and set by the integrator. These are properties that are

defined at system design or deployment time and that change value during normal

operation.

Note that we only deal with component properties here that are needed to design and maintain
the robot system. Handling application runtime data, such as image data stream or other sensor
time-series data is out of scope of this discussion and must be addressed at component level itself,
i.e. when designing a data acquisition or data storing hardware/software component.

We will therefore concentrate our efforts on finding the most relevant database for static and
semi-static properties. As far as dynamic properties or sensor data are concerned, we can at best
formulate recommendations for further developments within the framework of this WP.

6.3 Automatic property-extractor

Some of the properties that need to be managed in the structure mentioned in point 6.1 can be
contained in the source code itself. The collection of database information is a tedious, low-value-
added task (task that is in the manufacturers’ scope of action). But it has a strong impact on the
quality of the entire system, which is under the responsibility of the integrator, and which is a
major concern for the end users. The integrators should be the main users of this property-
extractor.
So, as soon as a piece of information is present in the code, we must make the best effort we can
to collect it and avoid requiring an operator to enter it manually. Only in highly processed and
monitored organizations is it possible to maintain a high level of quality on manual databases. Our
open ecosystem, involving contributors of various natures and sizes, cannot claim to follow this

FP3 IAM4RAIL - GA 101101966 65 | 118 Interne

model.
The effort required to collect data automatically will obviously have to be weighed up against the
benefits: we cannot say that we have to be able to collect information automatically at all costs;
nevertheless, automatic data collection will probably be a key element in maintaining data sets at
a high level of quality.
We support the open-source model. This may not be the case for certain manufacturers in the
ecosystem. We cannot yet impose this model, which could cut us off from interesting technical
solutions. This tool must therefore adapt to the configuration of a player wishing to open its code,
as well as to that of a player locking its source code. The tool should not expose the core of the
algorithms. In both cases, the instantiated properties will be identical.
We do not wish to be able to support the components of the manufacturers who would like to
make their solution(s) compatible with our environment, for example through a set of APIs, but
without complying with native ROS2 rules. They will be responsible for filling in the data manually
or with their own tools.
This tool should work with OS associated with ROS2 versions and for CPU platforms managed in
our ecosystem (currently Ubuntu 22.04 LTS for X86 and ARM architectures). Minimum hardware
requirements will be identical to those for OS.
This tool is approaching the RPA field. As the original elements are lines of code in structured
languages, potentially responding to guides, not requiring a priori cognitive interpretation, no
major lock exists in this area. A first version of such a tool, developed by Fraunhofer IPA, already
exist in the ECLIPSE Framework.10 [ROSModelextraction].
The ECLIPSE framework is a vast project. It goes beyond the strict requirements identified for the
MDE. Fraunhofer IPA has undertaken a migration of its tools to a VS-CODE plugin. The main
challenges of this migration are finding replacements of some of the Eclipse Modelling framework
core libraries (which are Java libraries) in the VS-Code ecosystem. Another challenge is the visual
representation of component models and especially an interactive visual canvas. Promising
candidates to overcome both challenges exist but need further investigation.
Here again, we want to test the tool proposed by Fraunhofer IPA after migration to VS-CODE to
consolidate a list of required and possible evolutions.
This tool will export constraints to the manufacturers' developers. A study has just been launched
with the help of students from the University of Stuttgart. The aim is to list these induced
constraints in greater detail.

6.4 Component properties visualizer

The ROS2 environment currently offers few graphical tools provided by the OSRF:

• RVIZ2 visualizes measured data (images, point clouds, accelerations, etc.);

• RQT visualizes more structural information: network of active nodes and data flows,

tree structure of robot frames, list of transmitted topics, etc.

10 https://ieeexplore.ieee.org/document/8906937 Bootstrapping MDE Development from ROS Manual Code - Part 2:
Model Generation

https://ieeexplore.ieee.org/document/8906937

FP3 IAM4RAIL - GA 101101966 66 | 118 Interne

• IGNITION (client part) is the graphical interface of a rigid multi-body dynamic simulation

tool.

Development under ROS2 relies on direct generation by developers of lines of code (XML variants,
Python, C/C++ or, less frequently, other languages) or parameter files (mostly YAML).
A very common practice in the developer community is the use of VS-CODE. Although VS-CODE is
a real productivity tool, it is still a text editor. It offers no advanced visualization functionality out
of the box. However, several plugins exist to add data visualization. For example, Fraunhofer IPA
has developed a plugin to visualize and manipulate kinematic models of robotics systems
described by URDF / XACROS files.
This sparing presence of graphical tools can be seen as a virtue. For ROS2 developers and
maintainers, it reduces the workload. For users, no effort is required to grasp the graphical
interface. But it can be tedious to find the information, buried in dozens or hundreds of lines of
code, spread across several files and sometimes managed in several files with notions of priority
(the same information may be entered with different values, for example in a parameter file and
in a launch file, but the value in the launch file takes precedence over the other). In the end, it is
the developer's productivity, or the quality of the code executed that suffers.
In our context, there is therefore a strong need for a graphical interface that is easy to maintain,
easy for users to understand and that accurately reflects the structuring of component metadata.
Visualization is a first objective, but it would also be advisable for this tool to be able to enter and
correct information, ensuring a consistent double backup in the database mentioned in point 6.2,
as well as in the source codes for the information contained therein.
Based on previous work, Fraunhofer IPA already offers this tool in the ECLPISE framework for
visualization and modification. It is part of the “ROS Tooling”. We already mention the wish to
have the MDE tools aside the ECLPISE framework. The migration is VS-CODE is hard to manage.
The targeted framework is the Theia framework11.
This visualizer will be used by both manufacturers and integrators.

6.5 Data structure for the hard- and software architecture and data flow

model

In a previous paragraph, we mentioned that the RQT tool, supplied as part of the standard ROS2
distribution, can be used to visualize a robot's active nodes and data flow (topics or services).
This visualization is performed "live" and only concerns active nodes and topics (not services)
without any monitoring on metadata.
This tool can only be used fairly late in the development phase, as the nodes need to be executed.
Even when this tool is monitoring metadata, the discovery of an incompatibility at this late stage
can have a huge impact: a significant proportion of the work carried out may turn out to be totally
useless.
For two fundamental reasons (lack of metadata and the need to execute nodes), we can't rely on
this tool.
We therefore wish to rely on the characteristics of each node documented thanks to the structure
and database described in 6.1 and 6.2 respectively.

11 https://theia-ide.org/

https://theia-ide.org/

FP3 IAM4RAIL - GA 101101966 67 | 118 Interne

However, integrators need to be able to indicate how nodes and properties are organized.
Systems and nodes properties can be defined at different levels:

• Logic level: definition of inputs and outputs, comprehensive of data type, allowed

values, minimum/maximum data input frequency required.

• Deployment level: once an application, as a combination of blocks, is defined, it must

be deployed. The deployment involves the definition of the computing architecture,

meaning that components must be assigned to computers in which they will be

deployed. Incompatibilities may arise if a certain node does not support a CPU

architecture, or if the combination of more nodes together in the same computer

creates a high workload on the CPU. For this reason, each component should come

with a definition of the supported CPU architectures, typical CPU usage and power

consumption, and the peripherals interfaces needed.

This also means that computing platform should be coherently implemented into the

advanced modularity tools, including their relevant specifications – CPU, GPU, RAM,

and other relevant data.

• Mechatronics level: depending on the level of the component used – it may be a simple

node or a complete robot – integration may require hardware connections, both

mechanical and electrical. The definition of these properties may be quite hard,

especially on the mechanical side, and may be explored in a subsequent phase of the

project. Definition of communication interfaces – (Ethernet, USB) – and power supply

requirements should be implemented per each component, to define if connections

between components are allowed.

This information must be stored in a database. It can be a shared database, such as the one defined
in paragraph 6.2 or a local database, sauch as a single file. While it is vital for the ecosystem that
the static properties of individual components are exchangeable, therefore accessible in a shared
database, this is less the case at the level of the complete system.

With the resources available in WP18 and based on previous developments at Fraunhofer IPA, we
can handle at least the logic level. For the more advanced levels, we'll try to establish
recommendations for further activities.

Here are some examples from the market. They may be a source of inspiration, but not all will be
usable as they stand; some elements, for example, are based on proprietary formats.
20-sim12 is another example of a graphical tool that enable the multi-domain modelling from the
mechatronic perspective. The interface admits the equation-based modelling as well. This
software also has simulation capabilities and code generation for real-time applications. However,
as its counterparts (Labview and Simulink) are proprietary.
But we can also find other open-source examples, such as OpenModelica13 and Scilab14. The
purpose of OpenModelica is mainly for modelling and simulation, while Scilab is more focused on

12 https://www.20sim.com/
13 https://openmodelica.org/
14 https://www.scilab.org/

https://www.20sim.com/
https://openmodelica.org/
https://www.scilab.org/

FP3 IAM4RAIL - GA 101101966 68 | 118 Interne

numerical computation and data analysis. OpenModelica also provides the Modelica modelling
language15 which is an open standard for modelling complex physical systems, enabling users to
represent both the structure and behaviour of systems.
Eclipse Modelling Framework (EMF)16 is a powerful framework for building tools and other
applications based on a structured data model. It is an open-source framework that forms part of
the Eclipse platform. I ECORE is a metamodeling language, allowing the implementation of the
OMG eMOF (essential Meta Object Facility) specification.

Therefore, manufacturers are asked to provide systems and components that are bundled with
the information described, in order to allow easy integration of their products into the advanced
modularity tool and enforce the MDE paradigm.

This tool will export constraints to the integrators' developers.

6.6 Tool to design this model

As already mentioned, in ROS2 it is the launch file that organizes the launch of nodes and services,
matching published and subscribed topics. Although a model can be observed during runtime,
there is no a priori structuring of the model.
Let's also reiterate that development under ROS2 relies on-line-of-code development in standard
languages with very few tools. The "entry ticket" for developers is therefore very low, more so
than with graphical tools. On the other hand, acquiring a high level of mastery, and therefore a
perfect understanding of induced code behaviour, is far more costly.
In the context of production use, with possible safety consideration, the emphasis must be on
product control. Integrators therefore need to have tools for this model structuring process.
We are confident in our ability to offer this type of tool, as the Eclipse framework already offers
them. As for the other tools the migration from ECLIPSE to VS-CODE plugin is going on. This
migration is made possible by the Theia framework (the same framework as for Tool 6.4).
It remains to be seen whether these tools can be adopted as they are or if modifications are
required. It will therefore be extensively tested in the WP's various developments.
This tool will be aimed primarily at integrators.

6.7 Tool that generates the robot software distribution from a model

Our modular robots will result from the assembly of components. The number of components,
especially software components, will increase with the complexity of the task to be accomplished.
For a given component, there might be a relatively high number of variants: it may be necessary
to generate a version for each type of CPU architecture (X86 and ARM), depending on the
distribution of ROS2, the versions of libraries on which the software depends... Versions must
coexist, as it is not always appropriate to undertake a migration of all deployed systems.
Nevertheless, it is vital that the software versions deployed on a system are indeed those
expected. The manual extraction of executable binaries or containerized elements is a potential

15 https://en.wikipedia.org/wiki/Modelica
16 https://projects.eclipse.org/projects/modeling.emf.emf

https://en.wikipedia.org/wiki/Modelica
https://projects.eclipse.org/projects/modeling.emf.emf

FP3 IAM4RAIL - GA 101101966 69 | 118 Interne

source of errors. Helping integrators with this task can therefore contribute to the quality of the
final product.
However, to be able to provide a tool for this stage, we need a physical model of the system (at
least for the communication layer), which we said in 6.5 was not a priority for this first ERJU call.)
This point will therefore be the subject of recommendations for future work.

6.8 Automatic code generator

The goal of automatic code generation is a correct-by-construction final result. The key idea is to
leverage formal information about the software system under construction to create as much of
its infrastructure code (so-called “boiler-plate code”) as possible to avoid human error in these
parts. The human developer is then only tasked to implement the internal application logic of
individual components, while all the integration of components is done by the code generation
tool.
Generated code in the context of ROS2 can include launch files, parameter and configuration files,
and the code skeleton for components as well as package-level infrastructure and deployment
infrastructure such as docker files and docker-compose files.
An early example is the BRIDE (Model-to-text) tool from the OROCOS framework. Another
example is the various code generator in the SmartSoft toolchain. Both focus on C/C++ and have
no or only limited support for Python code and do not support ROS.
During software development, a second aspect is generating documentation. This should have a
more important place, which it does not always have currently. A good documentation is hard to
develop, maintain and very tedious as well. An automatic documentation of the code is a very
important topic to make consistent the relationship between the documentation and the code.
There are many tools that normally are tight to the chosen programming language.
Here at least three types of documentation should be distinguished:

1. Code documentation aimed at developers enhancing a components internal workings.

2. Code API documentation explaining how to use a given component in a larger software

system

3. Deployment documentation describing the actual system configuration of a specific

deployed system, including the full bill of material (e.g. which components in which

versions are used) as well as a detailed record of which parts of the software system are

running on which parts of the hardware and how are those parts physically interconnected.

Documentation of the first two types is derived from specifically formatted comments inside the
source code. While several tools exist to extract such special comments and present the contained
information in a variety of way, such as HTML pages, PDF text and graphical class relationship
diagrams, only very few support the developer in writing such special comments in the required
form. A notable exception is the “autoDocstring” extension17 for Python in VS-Code.
The most popular tools to generate documentation are the following:

17 https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring

https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring

FP3 IAM4RAIL - GA 101101966 70 | 118 Interne

• Doxygen18 is a widely used documentation generator that supports various programming

languages, including C++, C, Java, Python, and more. It can generate an on-line

documentation browser and/or an offline reference manual from annotated source code.

• PyDoc19: in the case of Python, Doxygen does not work as good as it does for other

programming languages as C/C++. Thus, in this case, a specific tool for Python is preferred.

• Sphinx20 is a documentation generation tool widely used in the Python community. It can

be used to document various types of projects, including software projects, web

applications, and more. It supports multiple output formats, such as HTML, PDF, and ePub.

• JSDoc21 is a tool that generates documentation from JavaScript code. It uses special

comments to generate API documentation in HTML format. It is commonly used for

documenting JavaScript libraries and frameworks.

• GitBook22 is a modern documentation platform where teams can document everything

from products to internal knowledge bases. It supports the automatic generation of

documentation from Markdown files and integrates with various version control systems.

Read the Docs23 is a popular documentation hosting platform that can automatically

generate documentation from your codebase. It supports various documentation formats,

including Sphinx documentation for Python projects, MkDocs for project documentation,

and more.

As part of the work-package, we will not be undertaking any development activities on the
documentation part. As we have just seen, the "market" offers tools. We can't argue that these
tools have limitations that would justify our own developments. We will take advantage of WP18's
developments to gain a better understanding of any limitations and/or establish
recommendations for use for manufacturers and integrators.

For the part concerning what we have called "boiler-plate code" we will continue the initial
developments undertaken by Fraunhofer. This will benefit manufacturers and integrators alike.

This class of tools will export constraints to the manufacturers and integrators' developers.

6.9 Tool for checking incompatibilities and missing information in a model

During the creation of the robot model, or as a final check, you need to verify that the
characteristics of the output elements of one component correspond to the characteristics of the
input elements of the next component (see next figure). As it can be seen, when there is a match
between the variable type of the output port of the previous component and the input port of the
next component, the tool granted the link. In other case, the link is rejected. It is also important
to take into account the maturity of the model. In the early stages of development, you may not

18 https://www.doxygen.nl/
19 https://docs.python.org/3/library/pydoc.html
20 https://www.sphinx-doc.org/en/master/
21 https://jsdoc.app/
22 https://www.gitbook.com/
23 https://about.readthedocs.com/?ref=readthedocs.com

https://www.doxygen.nl/
https://docs.python.org/3/library/pydoc.html
https://www.sphinx-doc.org/en/master/
https://jsdoc.app/
https://www.gitbook.com/
https://about.readthedocs.com/?ref=readthedocs.com

FP3 IAM4RAIL - GA 101101966 71 | 118 Interne

have all the information you need to validate a link. The mechanism that prohibits the tracing of a
link that has not been fully validated, as illustrated in our diagram, should therefore not be
automatic.

Figure 5 - Example of the input-output check between modules

For shake of clarity, the previous diagram only shows the case of variable type check. However,
more examples can be found of an extended check where other types of constraints can be
considered. Such extra constraints can be signal frequency update or analogue variable signal
limits.
Some information can be expressed in simple terms, but comparisons cannot always be made
directly. Sometimes an equation is needed.
Another check should be done on ports that must be connected to other ports, compare to the
optional or loosely coupled ports, where can leave them unconnected (see component 4 in the
previous figure). Structure101 is a software that not only let visualize underlying structures of the
code but also specify APIs for every module and check the incompatibilities among them. It
supports Java, C#, C/C++ and python.

This tool will export constraints to the manufacturers and integrators' developers.

6.10 Quality check

Checking the quality of source code is an essential aspect of software development. There are
various tools available that can help analysing and assessing the quality of your source code. Here
are some popular tools used for this purpose:

FP3 IAM4RAIL - GA 101101966 72 | 118 Interne

• Linters: Linters analyse source code to detect potential errors, coding style issues, and

suspicious constructs. Popular examples include ESLint24 for JavaScript, Pylint25 for Python,

etc. In 26 a comprehensive list for linters can be found.

• Static Code Analysis Tools: These tools perform a deeper analysis of source code, looking

for bugs, security vulnerabilities, and code smells. Examples include SonarQube, PMD,

FindBugs, etc. In 27 a comprehensive list for static code analysers can be found.

• Code Review Tools: These tools facilitate code reviews and collaboration among team

members, allowing them to comment on code changes, suggest improvements, and

ensure code quality. Examples include GitLab 28 and Bitbucket29. In30, a list of most popular

code review tools is presented.

• Code Coverage Tools: Code coverage tools help assess how much of your source code is

covered by your test suite. They help you ensure that your tests are comprehensive and

thorough. Popular examples include JaCoCo for Java, Istanbul for JavaScript, and pytest-

cov for Python. Please check 31 for more details.

• Complexity Analysis Tools: These tools help assess the complexity of the codebase,

identifying areas that might be hard to understand or maintain. Examples include tools

like Code Climate and Understand for C/C++. Check also Static Code Analysis Tools.

• Dependency Analysis Tools: These tools help in analysing dependencies to ensure that the

code is not relying on deprecated or vulnerable libraries. Examples include OWASP

Dependency-Check32 and Snyk33.

• Security Scanning Tools: These tools focus on identifying security vulnerabilities in the

source code. Examples include Checkmarx34, Veracode35, and Fortify36.

• Unit Testing Frameworks: Though not directly for checking code quality, unit testing

frameworks such as JUnit for Java, pytest for Python, and Jasmine for JavaScript help

ensure that the code functions as expected. An extended list is available at 37 and at 38

24 https://eslint.org/
25 https://pypi.org/project/pylint/
26 https://github.com/caramelomartins/awesome-linters
27 https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
28 https://about.gitlab.com/
29 https://bitbucket.org/product/
30 https://blog.jetbrains.com/space/2021/12/15/best-code-review-tools/
31 https://www.guru99.com/code-coverage-tools.html
32 https://owasp.org/www-project-dependency-check/
33 https://www.getapp.es/software/2047389/snyk-1
34 https://checkmarx.com/
35 https://www.veracode.com/fix
36 https://www.microfocus.com/es-es/cyberres/application-security/static-code-analyzer
37 https://www.browserstack.com/guide/top-unit-testing-frameworks
38 https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

https://eslint.org/
https://pypi.org/project/pylint/
https://github.com/caramelomartins/awesome-linters
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://about.gitlab.com/
https://bitbucket.org/product/
https://blog.jetbrains.com/space/2021/12/15/best-code-review-tools/
https://www.guru99.com/code-coverage-tools.html
https://owasp.org/www-project-dependency-check/
https://www.getapp.es/software/2047389/snyk-1
https://checkmarx.com/
https://www.veracode.com/fix
https://www.microfocus.com/es-es/cyberres/application-security/static-code-analyzer
https://www.browserstack.com/guide/top-unit-testing-frameworks
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

FP3 IAM4RAIL - GA 101101966 73 | 118 Interne

• Continuous Integration Tools: CI tools such as Gitlab, Jenkins, Travis CI, and CircleCI can be

used to automate the process of building, testing, and checking the quality of your code

every time a change is made. A comparison study is available at 39 and at 40 and at 41

As with the generation of documentation, we do not wish to allocate resources to the
development of a tool in this area. We will focus on testing existing solutions and producing
recommendations for manufacturers and integrators.

This class of tools will export constraints to the manufacturers and integrators' developers.

6.11 Visual launching/stopping tool

During the development and specially the debugging phase, integrators may have to launch some
specific nodes. Classically unitary launch files are created (to start one node or a limited number
of nodes). Then assembly launch files are generated, launching themselves the unitary launch files
"in cascade". This cascade is sometimes implemented on several levels. The result is a mille-feuille
that is tedious to use, analyse and maintain. In the development phase, if integrators want to
launch a limited number of nodes, they need to create a specific assembly launch file or manually
launch the relevant unit launch files one after the other.
In the case of ROS, a basic software is rqt_launch. At this stage, we cannot say whether this tool,
although basic, meets our needs, or whether it needs to be upgraded. Rather than initiating
development a priori, we feel it's necessary to test this tool in greater depth. If we notice during
those trials that the limits of the tool are quite for away, we will recommend it use. If not, we will
reconsider to add it development to our roadmap. In this situation we will also have to document
the possible to cooperate with the rqt_launch maintainers and not only the creation of a novel
tool. This can minimize the amount of necessary workforce from our side but also make us more
visible in the ROS community.

39 https://www.atlassian.com/continuous-delivery/continuous-integration/tools
40 https://www.guru99.com/top-20-continuous-integration-tools.html
41 https://smartbear.com/blog/top-continuous-integration-tools-for-devops/

https://www.atlassian.com/continuous-delivery/continuous-integration/tools
https://www.guru99.com/top-20-continuous-integration-tools.html
https://smartbear.com/blog/top-continuous-integration-tools-for-devops/

FP3 IAM4RAIL - GA 101101966 74 | 118 Interne

7 Impacts for developers

The popularity of ROS/ROS2 has been built around its relative accessibility: by developing in lines
of code in standard languages (Python, C/C++...), it's easy to create a prototype.
We do not want to go against this approach by imposing a rigid MDE framework on developers on
manufacturers’ side or on integrators side. Our intention is to support the development process
with tools where quality and productivity are at stake, and to enable developers as far as possible
to adapt the balance between the tool-based approach and the "free" approach to their own
feelings and experience.

This minimizes constraints, but it's not possible to be completely free of them.
We have already mentioned above a study recently launched at the university of Stuttgart, which
will enable us to better materialize the list of constraints exported to developers who are declining
to use the tools we need to guarantee quality and boost productivity. The results of this study will
be known in early 2024.
While we refer to the results of this study for the precise nature of the constraints, we have
described for each tool whether there will be a constraint, and the stakeholder who will be most
affected.

Without this constituting a real constraint, we will promote guidelines and good practices.
The ones we can see at this stage take the form of compliance with various guidelines:

• REP 103,

• REP 105,

• REP 144,

• REP 149,

• REP 2004,

• ROS C++ Style GuideLines,

• ROS Python Style GuideLines,

• ROS YAML Overview

FP3 IAM4RAIL - GA 101101966 75 | 118 Interne

8 Conclusions

Most of the tools we propose to develop will benefit from work previously carried out by
Fraunhofer IPA. This minimizes our development effort while maximizing our chances of success.
However, the tools proposed by Fraunhofer IPA are “work-in-progress”. They will depend for their
future development on input from initial use in the project. Basically, the WP18 will build on top
of pre-existing experience and initial, workable tools to build a domain-specific toolchain out of
the concepts previously developed at Fraunhofer IPA.

The diagram below illustrates the positioning of the tools we intend to develop in the development
environment.

Figure 6 - Positioning of the Advanced Modularity Tools

With this in mind, our development efforts will focus on 8 tools:

• a data structure for component description (tool 7.1)

• a data base of components properties, using the above-mentioned structure (tool 7.2)

• an automatic component properties extractor from code (tool 7.3)

• a component properties visualizer (tool 7.4)

• a data structure for the system – robot – (tool 7.5)

• a tool to model the system as an assembly of components – robot – (tool 7.6)

• a tool that automatically generates code, except for the documentation (tool 7.8) – for

documentation we propose to test existing solutions

FP3 IAM4RAIL - GA 101101966 76 | 118 Interne

• a tool for checking incompatibilities and missing information in a system model (tool 7.9)

For 2 tools, we will test existing solutions and make recommendations for use and/or further
development:

• a tool that checks code quality (tool 7.10)

• a visual launching/stopping tool (tool 7.11)

For 1 tool, we will draw up recommendations for future developments:

• a tool that creates the robot’s software distribution from its model (tool 7.7)

The corpus of tools that will be available at the end of the project will provide a solid, concentrated
core of Model Design Engineering tools with a strong impact on product quality and development
productivity. Beyond the scope of the project, efforts will have to be continued to increase the
perimeter of certain tools (moving the system's data structure from the "logical" scale to the
"physical" scale, then to the mechanical scale) or by undertaking work on tools that are not yet
covered (software distribution tool).

The 4 tools that export constraints to developers are:

• automatic component properties extractor

• data structure for the system

• tool that automatically generates code

• tool that checks code quality

We have endeavoured to limit this number. The precise list of constraints will be known in January
2024, following the completion of a study conducted at the University of Stuttgart with the help
of students.

FP3 IAM4RAIL - GA 101101966 77 | 118 Interne

FP3 IAM4RAIL - GA 101101966 78 | 118 Interne

9 References

ROSMetamodels: N. Hammoudeh Garcia, M. Lüdtke, S. Kortik, B. Kahl and M. Bordignon,
"Bootstrapping MDE Development from ROS Manual Code - Part 1: Metamodeling," 2019 Third
IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 2019, pp. 329-336,
doi: 10.1109/IRC.2019.00060.

ROSModelextraction: N. Hammoudeh Garcia, L. Deval, M. Lüdtke, A. Santos, B. Kahl and M.

Bordignon, "Bootstrapping MDE Development from ROS Manual Code - Part 2: Model
Generation," 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS), Munich, Germany, 2019, pp. 95-105, doi:
10.1109/MODELS.2019.00-11.

FP3 IAM4RAIL - GA 101101966 79 | 118 Interne

PART C – SAFETY ASSESSMENT

FP3 IAM4RAIL - GA 101101966 80 | 118 Interne

1 Executive Summary

Objective:
Recently, more advanced machines, which are less dependent on human operators, have been
introduced on the market. These machines, known as collaborative robots or cobots, are working
on defined tasks and in structured environments, yet they can be trained to perform new actions
in this context and become more autonomous. Further refinements to machines, already in place
or to be expected, include: real-time processing of information, problem-solving, mobility, sensor
systems, learning, adaptability, and the capability of operating in unstructured environments (e.g.,
construction sites). The Commission Report on the safety and liability implications of Artificial
Intelligence, the Internet of Things and robotics [1] states that the emergence of new digital
technologies, like artificial intelligence, the Internet of things and robotics, raises new challenges
in terms of product safety. The report concludes that the current product safety legislation,
including Directive 2006/42/EC, contains several gaps in this respect that need to be addressed.
Thus, this Regulation should cover the safety risks stemming from new digital technologies.
This means that for a project like FP3 - IAM4RAIL, and more specifically for its WP18, the work
cannot be exclusively technical. In parallel with the progression of the TRL level, these additional
regulatory issues need to be addressed.

This document therefore describes the elements that need to be compiled to proceed with the
Safety Assessment of a collaborative or autonomous railway maintenance robot. It suggests a way
of organizing information in a safety case to make it easier to understand for people who will be
examining it. This organization is reflected in a template we have called the “Safety Plan”.

Methodology:
This document was conceived in an iterative way. For each theme, one of the participants
delivered a proposal to the other members of the working group. This formed the basis for
discussion within the group. Then, whenever possible, the proposed piece of methodology was
applied to one or more of the WP18 demonstrators. Each iteration was concluded by a feedback
phase to refine the proposal.

Conclusion:
A Safety Plan for a railway maintenance robot should be divided into four sections: Purpose of the
Safety Plan, System Definition, Safety Proof Concept, and Safety Assessment Report. These
sections represent the basic pillars of the safety case for the process change of maintenance
measures in the rail system. The Safety Plan should be a covering document which organizes and
references the most important documents in the safety demonstration. Our Safety-Proof Concept
suggests that the path for such a demonstration should be structured in five perimeters: basic
machine safety, information safety, movement safety, inspection safety, and intervention safety.

FP3 IAM4RAIL - GA 101101966 81 | 118 Interne

2 Abbreviations and Acronyms

Abbreviation / Acronym Description
MAWP Mutli-Annual Work Plan

WP Work-Package

ATO Automatic Train Operation

GoA Grade of Automation

ETCS European Train Control System

HAZOP Hazard and Operability Studies

FMEA Failure Modes and Effects Analysis

FTA Fault Tree Analysis

FP3 IAM4RAIL - GA 101101966 82 | 118 Interne

3 Objective/Aim

In the last few years many new technologies have evolved, including autonomous robots, artificial
intelligence and new data transmission standards. These technologies have introduced new risks
and difficulties in integrating them into the railway sector. This is reflected in the new EU Machine
Regulations (2023/1230) [2] and the EU AI Act (2023) [3].
To improve the safety of integration of new robotic technologies and to enhance the transparency
between manufacturers, operators and auditors of such systems, one part of this project aims at
creating templates and guidelines for creating a safety assessment.

The need to develop modular robots for railway maintenance was outlined in the middleware
selection part of this document. The document on overlay for advanced modularity describes the
quality and productivity tools to be deployed to make the most of modularity in our context. But
there is another area where this modularity can be put to good use, in safety demonstrations.
It would be a waste if development were to proceed rapidly due to advanced modularity tools, but
production was slowed down by the necessary safety demonstration phase. This is even more
important as the world of robotics is frequently undergoing a renewal of both hardware and
software products (this renewal may occur because of obsolescence or because of a steep increase
in performance).

It is also important to agree on a common methodology. Consider the case of a robot designed for
a new use which results from the assembly of some of the components of several robots used for
other purposes. An obvious first step for each of the partners is to try to reuse the largest possible
part of the safety demonstrations already carried out within its own organization. But an even
more promising, not so obvious second step is for each partner to reuse the largest possible part
of the demonstrations already carried out by trusted partners (or by partners following a trusted
process). This can minimize the effort it will have to put into its new safety demonstration. While
the first, intra-organizational (within a single company) mechanism seems natural, the second,
inter-organizational mechanism can be a major habit breaker.
To be sustainable in the long term, it requires balanced contributions from all stakeholders. It
should be noted that various balancing solutions exist. These can be a balance in numbers (each
contributor provides and withdraws as many demonstration elements as the others) to financial
compensation (for those who use the most to those who provide the most). This will be dealt with
in subtask 18.1.3 of the work package. Here we are going to concentrate on the more technical
aspects of such a system.

We describe the elements that need to be compiled to proceed with a Safety Assessment. We can
explain them in detail by referring to the contents of the safety plan shown in Appendix D.

As the industrialization of AI-integrated systems grows, the regulatory framework, particularly at
the European level, is in a highly dynamic phase (EU AI act [3], Proposal for a regulation of the
European Parliament and of the Council on machinery products – COM(2021) 202). It is therefore
important that throughout the project we keep abreast of changes in the regulatory framework
to, at the very least, remain internally consistent.

FP3 IAM4RAIL - GA 101101966 83 | 118 Interne

FP3 IAM4RAIL - GA 101101966 84 | 118 Interne

4 Methodology

We worked in an iterative form. For each theme, one of the participants delivered a proposal to
the other members of the working group. This basis for discussion was then discussed in the group.
Then, whenever possible, the proposed piece of methodology was applied to one or more of the
WP18 demonstrators. The next step was a feedback phase to refine the proposal. Finally, this
document was reviewed internally and externally before being delivered.

5 Overview of the Safety Plan Content

The following procedure in terms of the safety verification is illustrated with the safety plan. The
safety plan is divided into four chapters (Purpose of the Safety Plan, System Definition, Safety
Proof Concept, Safety Assessment Report). These constituents represent the basic pillars of the
safety case for a process change of maintenance measures in the rail system. Each of them will be
described one by one in the following subsections.

5.1 Purpose of the Safety Plan

The safety plan is a high-level or umbrella document which organizes and references the most
important documents in the safety demonstration. For this reason, this document does not itself
contain the concrete performance of the system components or the scope of the automation. This
concretization takes place in the elements of the safety-proof concept.

The safety plan is designed for the following cases:

- initial verification of a maintenance procedure change, regarding the replacement of

manual maintenance activities by a defined automated solution, and

- verification of a maintenance procedure change, involving the use of an evolved

 automated solution (the change may come from the procedure, the automated system,

or both).

In all cases, each situation must be properly analysed, even if it follows a documented situation.
This means that the document used for the initial verification cannot be used as it stands to
support the verification of a subsequent case, e.g., a retrofit of the automated system.

The risk management procedure shall be implemented according to the Standard EN 50128
(Railway applications - Communication, signalling and processing systems - Software for railway
control and protection systems), the Commission Implementing Regulation (EU) No 402/2013
(Common safety method for risk evaluation and assessment) as well as NF EN ISO 12100 (Safety
of machinery - General principles for design - Risk assessment and risk reduction).
In its most basic form, the risk management system should have a system description and an
assessment of the significance of change. If this change to the previous system proposes a
significant safety impact, a risk assessment of the new system must be conducted, and measures
need to be employed to address the stated risks.

FP3 IAM4RAIL - GA 101101966 85 | 118 Interne

In the context of emerging robot technologies developed for railway maintenance activities,
careful consideration needs to be taken in the system definition and the context in which the
robots will be functioning (see Section 6.2 for more details). Furthermore, the system itself should
be described in terms of the 5 pillars described in Section 6.3: Basic machine safety, Information
safety, Movement safety, Inspection safety, and Intervention safety.

5.2 System Definition

The system definition is the fundamental building block on which the safety verification for a
change in a railway maintenance process is based. This allows the specific project to be broken
down into its most important components and ensures that all aspects of the process change have
been considered for a proper safety verification. The overarching goal of the system definition is
to create transparency on the purpose, intended environmental context, boundaries, and
functions of the system.

Through the course of the project, a template for a system description will be developed alongside
corresponding guidelines. To validate these templates, they will be applied to the contexts of each
of the 4 applications encompassing this project. In providing these frameworks and guidelines, the
FP3 - IAM4RAIL WP18 will provide a starting point for similar robotics projects and reduce the time
needed to safely incorporate robotic technologies into maintenance activities.

An example of initial requirements on a system definition that have been already recognized by
the working group, is listed below.

• Purpose of the system including a description of the system in terms of the 5 pillars (see

section 6.3)

• Operational Design Domain in which the system is intended to function:

o Could include energy and heat flow, shock, vibration, electromagnetic

interference, velocity, weather, environmental restrictions etc.

• System boundaries and interfaces including one or more of the following:

o other integrating systems,

o processes (manual/automatic),

o external systems,

o physical (e.g., energy and heat flow, shock, vibration, electromagnetic

interference),

o functional interfaces (human, software, AI).

• Internal system components and interfaces including one or more of the following:

o processes (manual/automatic),

o physical (interacting),

o functional (human, AI, software, IT, communication etc),

o human,

FP3 IAM4RAIL - GA 101101966 86 | 118 Interne

o automation/machine learning,

o data components, processes, and flows,

o technical,

o operational components,

o software systems,

o hardware/communication infrastructure.

A first version of the template mentioned above is available in Appendix F. This version is based
on the chassis inspection robot demonstration. Partial uses of this template have already been
made on the demonstrators for multipurpose inspection of infrastructure and for disinfection of
trains and small stations.

FP3 IAM4RAIL - GA 101101966 87 | 118 Interne

5.3 Safety Proof Concept

It is necessary to structure the path that is to be followed to provide proof of safe operation. Like
all technical systems, a railway maintenance robot can be broken down along two axes: the
functional axis and the component axis. The relationships between these two axes can be qualified
in matrix form, using Suh matrices for example.
While there are advantages and disadvantages to each decomposition (on the functional axis and
on the component axis) for a safety proof, mixing them up can lead to confusion. This includes
potential redundancy of information for the reader, difficulties for editors in positioning
information in the right place, and other problems. Thus, we choose one axis and stick to it.

Since the use of a robot in a maintenance process includes very various aspects and can involve
several components and technologies, we propose to establish categories qualifying the
operations (simplified functional axis), to be able to bring a certain genericity to the methodology
for achieving a safety approval. However, when it comes to providing proof, it is important to
ensure that all the means used (data acquisition, information processing on the hardware and
software side, effectors, etc.) are covered by demonstration.
In our analysis, it appeared that one item may be an exception to the rule that we have just
mentioned. To better highlight cybersecurity issues in the analysis, we believe that the information
transmission between the robot and its environment should be covered by a separate category.

To establish the operations categories, we have drawn on scales created for autonomous systems
in other industrial sectors (automotive, aeronautics, etc.). Our division involves the notion of
perimeter. It is then within each perimeter that the degree of automation and autonomy comes
into play.

The five perimeters we have established are:

1. Basic machine safety,

2. Information safety,

3. Movement safety,

4. Inspection safety, and

5. Intervention safety.

For each of these categories, we are now unable to indicate the precise methods and means that
will need to be implemented to measure the effectiveness of the means implemented to
guarantee the expected level of safety. Nor will we be at the end of the project. Methods and
means are too technology dependent. For example, to detect obstacles in front of a vehicle,
different types of sensors can be used: an array of ultrasonic sensors, a laser scanner, or a camera
with deep-learning-based image processing software. All these methods have different conditions
of use and incur different risks. For example, ultrasonic sensors might fail due to broken cables,
the software analysing laser scanner results might contain errors, and the training data for the
neural net which processes camera images might be inadequate. To safeguard against a broken
wire, its resistance can be measured. Software errors can be detected by systematic testing or
formal analysis methods. The accuracy of a neural network can be measured by independently

FP3 IAM4RAIL - GA 101101966 88 | 118 Interne

generated test data. Therefore, no uniform method can exist which shows that “obstacle
detection” is safe.
However, we can cite two methods which themselves offer sub-variants. Design based methods
are constraining for developers. But as we cannot assign one or other variant to a particular
category linked to the product's purpose, we unfortunately cannot be precise about the
constraints that will apply to the project's robot developers.

• Design Analysis and Validation: There should be documented safety reviews and

analyses for the maintenance robot hardware and software, as well as for its design

process. For software, the design process comprises requirements analysis, architectural

design, module design, implementation and coding, module integration, and deployment

on the robot; the result of each phase must be reviewed. Formal specifications and

models can help to make requirements more precise. Code review techniques and static

analysis tools have been developed to identify safety and security flaws, such as coding

errors and vulnerabilities. Furthermore, formal methods such as model checking and

program verification can reveal software bugs, and model-based development (e.g.,

based on semiformal modelling languages such as UML) can help to reduce the likelihood

of such bugs. For AI-based systems, amongst other things, training data and hyper-

parameters must be reviewed. Furthermore, the software architecture should be

reviewed and/or analysed, with respect to critical decisions taken by an AI. If the

software is structured into an operating system, middleware and application layer, it may

be the case that each layer can be validated separately. For commercially-off-the-shelf

components, it might be the case that parts of the safety argument can be provided by

the supplier.

• Systematic Testing: The main method, but not the only one, for quality assurance of

software-based systems is systematic testing. This must be performed at all development

stages: unit testing, component testing, integration testing, and system testing. The

systematics can be according to implementation (code-based testing) or specification

(requirements-based testing). In specification- or model-based testing, test cases are

automatically derived from requirements and design models. Ideally, testing of cyber-

physical systems such as railway maintenance robots should be first done in a simulation-

based testing environment with an automated test execution framework, before actual

field testing takes place. For AI-based software, robustness with respect to adversarial

examples must be tested, and comparisons with scenario-based user evaluations should

be done. Furthermore, it is advisable to perform stress testing for robustness, and

penetration testing for intrusion protection.

On the other hand, these categories allow us to specify the nature of the demonstrations that
need to be produced. Although we are not in a position to propose a generic approach, the
instance of the document corresponding to a specific project will have to specify the means of

FP3 IAM4RAIL - GA 101101966 89 | 118 Interne

proof implemented.

5.3.1 Basic Machine Safety

The most fundamental aspect of a railway maintenance robot is that it is a complex (mechanical
and programmable electronic) machine, working in an industrial environment. Therefore, it must
conform to the accepted safety rules for such machines. For the basic machine safety of railway
maintenance robots, we do not propose a grading scale. The aim is to establish that the machine
“per se” is safe for both its users and environment, including third parties: there is no risk of
electrocution or electrification, burns, fire, undesirable release of fluids or energy, etc. For this
part, we propose to rely on existing norms and standards, such as the CE marking. We have drawn
up a list of a priori relevant standards, which we will need to complete and refine throughout the
course of the project. The list compiled to date is available in Appendix E of this document. It
should be noted that it is important also to define criteria to decide if a certain standard applies
to a given robotic system. Applying all available standards to any railway maintenance robot
development project may lead to increased development time and cost. The set of standards to
apply to a particular project depends on the risk assessment of using the robot for a particular task
in the railway environment. This is also the general process that manufacturers follow to apply CE
marking to a product.
A categorization of relevant safety standards was given in [9] as follows:

Figure 7 - Categorization of Relevant Safety Standards

The top layer of this pyramid structure is formed by safety standards of Type A, which are basic
safety standards for general requirements, such as those given by IEC 61508 or EN 50129. Below
that, there are generic (Type B) safety standards – Type B1 standards dealing with specific safety

FP3 IAM4RAIL - GA 101101966 90 | 118 Interne

aspects and Type B2 standards considering specific safeguarding techniques. Even deeper, there
are Type C standards considering safety measures for specific machinery such as industrial
(stationary) robots. Type C standards take priority over Type A and Type B standards, since they
are more specific.
It is important to note that this categorization applies not only to the safety of railway maintenance
robots concerning movement and electric shocks, but also to other threats such as IEC 60825-1
for the use of laser beams not to hurt human eyes.

In the further steps of the project, we will use our expertise of the railway context to identify the
relevant risks and define the appropriate requirements for a robotic solution.

5.3.2 Information Safety

A more detailed view of a railway maintenance robot considers it as a computer-controlled
mechanical machine. Thus, both the safety of its information flow and the safety of its mechanical
movements must be guaranteed. For the information flow part, the detailed levels may be
classified as follows:

• Information acquisition (i.e., sensing),

• Information processing (i.e., computation), and

• Information transmission (i.e., communication).

As mentioned in the introduction to Chapter 6.3, proof demonstrations falling within the scope of
sensing or computation must be managed at the level of each purpose (movement, inspection,
intervention) that uses those items.

For a classification of the information transmission (communication) in railway maintenance
robots, we consider only information which is transmitted from the robot to the outside. Having
this specific focus could indeed help us to take better account of cybersecurity issues as previously
mentioned. Information transmitted to the robot, e.g., telecommands for movement, inspection
or intervention, are considered in the respective perimeter. For the communication of information
gathered by the robot, we propose a scale with three grades:

IC0. Information is not shared by the robot,
IC1. Information is shared with non-safety-relevant external systems, and
IC2. Information is used by safety-relevant processes.

Communication type IC0 (information is not shared by the robot) characterizes robots which are
“closed systems”; they perform maintenance tasks without external intervention. For such robots,
it may not be necessary to safeguard the communication.

Communication type IC1 (information is shared with non-safety-relevant external systems)
subsumes remotely controlled and autonomous robots in non-safety-related contexts. In a
remotely controlled robot, it must be assured that the receipt of control commands by the robot
is dependable. Even in non-safety-related contexts it may be necessary to safeguard the

FP3 IAM4RAIL - GA 101101966 91 | 118 Interne

communication of the robot with external systems, for the protection of privacy and/or
intellectual property rights. There are standards like the IT Baseline Protection Manual of the
European Union Agency for Cybersecurity, or the EU’s GDPR dealing with these topics.

Communication type IC2 (information is used by safety-relevant processes) is used if the
information which the robot gathers and transmits is used in safety-related processes. Here,
special measures for safeguarding the information transmission between the robot and other
systems or humans must be implemented, according to the rules which are applicable for the
respective process. Typical concerns include data integrity and timely availability, confidentiality
of information, authentication and authorization of actors, non-repudiation, etc.

5.3.3 Movement Safety

A defining criterion for each robot, which distinguishes it from other information processing
machines, is that it can move in space, as a whole and/or with different “body parts”. The
movement of physical masses poses a potential threat to the environment. We can distinguish
different criticalities of movement according to the level of autonomy in different application
scenarios. For classifying the movement safety of railway maintenance robots, we are proposing
a scale with five grades:

MS0. Remotely controlled movement,
MS1. Supervised autonomous movement,
MS2. Driverless movement in controlled areas,
MS3. Driverless movement in dedicated areas, and
MS4. Free and unattended movement.

Movement safety type MS0 (Remotely controlled movement): Movement is controlled by a
human driver which is either on board or beside the vehicle. The vehicle cannot move on its own,
and responsibility for the safety of the movement rests solely with the human driver. In terms of
the Automatic Train Operation (ATO) classification, this comprises the Grades of Automation (GoA)
0 and 1 – on-sight train operation and non-automated train operation.
Safety measures may include automated monitored stop functions, speed and separation
monitoring, and power and force limiting. Relevant standards include ISO 10218: Robots and
robotic devices — Safety requirements for Industrial Robots, Part 2: Robot systems and
integration, and ISO/TS 15066: Robots and robotic devices — Collaborative robots.

Movement safety type MS1 (Supervised autonomous movement): Robots of movement type MS1
can move autonomously but are supervised by a human at all times. Supervised autonomous
movement includes assisted driving where the driver is on board or monitoring the vehicle right
next to it or from a remote site. It corresponds to GoA 2 – semi-automatic train operation. In the
operation, we must distinguish between two different situations: Normal runs, where everything
works as expected, and abnormal runs or emergencies, where the human takes over control.
For the safety proof, we must additionally show that human supervision is always possible, and

FP3 IAM4RAIL - GA 101101966 92 | 118 Interne

that the robot will always accept and follow supervisory commands.

Movement safety type MS2 (Driverless movement in controlled areas): Robots of movement type
MS2 are designed for work inside controlled areas, e.g., rail service centres, construction and
storage halls, maintenance facilities, etc. Within these areas, they perform their tasks
autonomously, there is no or only very little need for human supervision. For robots of movement
type MS2, interaction with other human workers and third parties can be limited, e.g., by suitable
factory safety rules. This way it can be guaranteed that no physical contact occurs between
humans and machines. Examples for robots of this movement type would be autonomous rail car
underbody inspection robots and autonomous passenger carriage disinfection robots.
There are six main contributors to movement safety in this type: energy level (combination
between mass and speed), software, hardware (control), hardware (execution), hardware
(sensing), and area control system (that can be subdivided). To show the safety of movement for
robots of this type, we need to make sure that the robot will never leave the controlled area during
its operation. This may involve the use of redundant sensors and/or external supervision systems.

Movement safety type MS3 (Driverless movement in dedicated areas): In contrast to robots of
movement type MS2, railway maintenance robots of type MS3 can move on public sectors of the
railroad network, inside railway carriages, or in other public spaces like railway stations. They
perform their tasks autonomously and potentially unsupervised, but the area in which they work
can be dedicated to the robot. That is, the tracks occupied by the robot during operation can be
closed for other traffic, the carriage can be emptied of people, and the station (or a dedicated area
of the station) can be closed to the public. An example of a robot of this movement type would be
an autonomous installation robot which mounts ETCS balises on a dedicated track.
The main contributors to movement safety are the same as with MS2. For movement safety, we
need to include measures (e.g., laser scanners) in the robot to survey its environment for humans,
other vehicles, animals or other obstacles in its way. Furthermore, we must show that these
measures are effective, i.e., will prevent collisions if possible.

Movement safety type MS4 (Free and unattended movement): Robots of movement type MS4
can move freely and unattended on public sectors of the railway network or in other public spaces
which humans and/or other automated systems are occupying. In terms of automated train
operation, this corresponds to GoA4 – unattended train operation. An example for a robot of this
movement type would be a fully automatic vehicle for the inspection of the rails and catenary
equipment on an ETCS-controlled track.
With this movement type, there are five main contributors to movement safety: energy level
(combination between mass and speed), software, hardware (control), hardware (execution), and
hardware (sensing). The safety proof for this movement type of robots, which is beyond the scope
of the IAM4RAIL project, involves showing all requirements for autonomous vehicles on public
roads: traffic rules, safe signalling, safe obstacle detection, etc. It is comparable to the safety proof
for autonomous freight trains, shunting locomotives, and other unmanned railway vehicles.

5.3.4 Inspection Safety

FP3 IAM4RAIL - GA 101101966 93 | 118 Interne

Railway maintenance robots not only have to move on the tracks, but they are also designed for a
specific purpose. We distinguish two main purposes: inspection and intervention. An inspection
robot is equipped with sensors to measure and analyse its subject, but it will never deliberately
interfere with it. In contrast, an intervention robot has actuators with which to repair, improve or
modify its subject during the task.
For inspection safety, we are proposing a scale with five grades:

IS0. Non safety relevant inspection,

IS1. Manually inspected safety relevant properties,

IS2. Manual inspection with support functions,

IS3. Semi-automatic inspection, and

IS4. Fully autonomous inspection.

Inspection safety type IS0 (Non-safety relevant inspection): Railway maintenance robots of
inspection type IS0 are sent out to observe and/or measure certain circumstances, which are
important for the operation of the railway network but are not relevant for the safety of humans.
Examples of such inspections would be the checking for graffiti on a train, or the wear and tear of
the seats in a passenger rail car. Even for robots of type IS0, it may be necessary to ensure that
only relevant information is collected, e.g., there might be limitations to video-streaming due to
privacy or military reasons.

Inspection safety type IS1 (Manually inspected safety-relevant properties): Robots of type IS1
inspect safety-relevant properties. However, they are only used for the collection of data
(measurements, pictures, videos, etc.), not for automated data processing. The safety-critical
decision is made by humans with the help of this data. Thus, even if the inspection can be
considered as still being manual, the means to carry it out have evolved. For example, with the
help of an IS1-type robot, operators can read an image on a screen in a comfortable office
environment, whereas previously they could view the scene only directly in the workshop. If the
modalities are to evolve, it will be necessary to demonstrate that the new conditions for decision-
making lead to results of a quality at least as good as the previous ones. Issues which might
influence the decision-making process could be the quality and timeliness of a video stream, safety
of transmission etc., which must be handled here if they were not yet considered in the safety of
Communication type IC2.

Inspection safety type IS2 (Manual inspection with support functions): A human conducts the
safety-relevant inspection and receives extra, independent information from the machine based
on its inspection results. The information provided by the robot (or corresponding robot
functionality) supports the task of the human inspector, but it is not necessary to safely complete
the inspection. The automated analysis is an “add-on”, which gives additional information but is
not in itself safety-relevant. If there is a discrepancy between findings, the human will make the
final evaluation and decision. Here it is particularly important to show that there is not an over-
reliance on the support function. Similar to inspection safety type IS1, for the safety proof it needs
to be shown that the support function does not deteriorate the manual inspection process.
The five potential main contributors to safety are: human, software, hardware (sensing), hardware

FP3 IAM4RAIL - GA 101101966 94 | 118 Interne

(control), and communication.

Inspection safety type IS3 (Semi-automatic inspection): With this type, parts of the inspection
process are automated by the robot system while other parts are conducted by a human. With
robots of inspection type IS3 the processing and analysis of the inspection data obtained by the
robot is done by the robot itself, or by some external computer. The machine arrives at safety-
critical decisions. However, there is still a human in the loop as a fallback level. There is a threshold
associated with each inspection result. If the results of the automatic analysis are beyond
threshold, the human is triggered by the robot to do a second evaluation, review a finding or
complete the inspection step.
An example would be an underbody inspection robot checking the integrity of brakes. If the robot
can localize the brakes and verify that they are in good working condition, the inspection result is
positive; otherwise, a human must take over responsibility and inspect the brakes. Another
example is an autonomous robot supervising a closed area for intruders. If the camera detects
objects which the robot AI with 90% probability classifies as humans, it sends an alarm to the
security staff, who can look at the video stream to determine the necessary actions.
The most important task in the safety proof is demonstrating that the threshold is safe, i.e., an
automatic decision is reached only if it is beyond reasonable doubt that it rests on firm grounds.
For AI-based systems, this may involve the use of automatically generated explanations and their
independent automatic checking. If the decision is transferred to a human, it must be safeguarded
as for IS1 and IS2.

Inspection safety type IS4 (Fully automatic inspection): When operating correctly, the inspection
process with robots of type IS4 is fully automated with no direct human intervention and/or
interaction required. Robots of this inspection type perform their work without any human
fallback layer. The robot or remote computer decides safety-critical issues on its own, humans do
not interfere with the decision.
For robots of this inspection safety type, it needs to be shown in the safety assessment that the
automation is equal or better at performing the task than a human expert. This can involve
systematic testing, online monitoring, training data analysis, scenario-based user analysis, and
other verification methods.

The following picture shows the safety responsibility spectrum between IS2, IS3 and IS4.

Figure 8 - Human vs Machine Responsibility

FP3 IAM4RAIL - GA 101101966 95 | 118 Interne

5.3.5 Intervention Safety

Intervention refers to tasks where a robot is physically manipulating objects of the rolling stock or
railway infrastructure, for installation or maintenance. For the intervention safety, we are
proposing a scale with five grades:

IV0. Non safety relevant intervention,
IV1. Manual intervention for safety-relevant properties,
IV2. Manual interventions with support functions,
IV3. Semi-automatic intervention, and
IV4. Fully autonomous intervention.

Intervention type IV0 (Non-safety relevant intervention): We say that an intervention is of type
IV0, if the manipulations needed to maintain an object are not safety critical. For example, cleaning
graffiti off of an asset due to cosmetic reasons using a robot would be an intervention of type IV0.
For robots of this intervention type, it may not be necessary to give a proof of intervention safety
(however, in most cases it will still be necessary to prove the other perimeters).

Intervention type IV1 (Manual intervention for safety-relevant properties): In interventions of type
IV1, the human has full control over the robot function/system that is used to fix or intervene in a
safety critical part of the system element. Here the human, potentially at a remote location, is
relying on the sensor and movements of the robot as a proxy to complete an intervention task.
The robot might also augment and amplify the physical capabilities of a human, e.g., to lift heavy
weights. As another example, a robot for repairing damaged crossings could be remotely
controlled by a human welding expert who does not need to travel to the respective location of
the switch. All the welding parameters are set by the human tele-operator.
With intervention type IV1, a major concern is the safety of the command-and-control interface,
including (potentially wireless) data transmission. As far as this is not handled by information
communication class IC2, adequate measures must be taken that the robot reacts properly to the
issued commands, and that the effects are communicated properly to the human operator.
For the safety proof, it must be verified that these measures are effective. Furthermore, the
security of the communication must be guaranteed.

Intervention type IV2 (Manual interventions with support functions): An intervention process of
type IV2 is performed by the human with the robot (or some automatic functionalities) for
support. Here the human is always in control and can choose to perform the tasks with or without
robot assistance. The support function eases the task of the human operator but is not necessary
to perform the safety-critical task. For example, if a human is welding a joint, a support system
could check and adjust the temperature while welding, measure geometric tolerances with special
tools and provide real-time monitoring of the quality of the welding.
For support functions of type IV2, it must be shown that a malfunction cannot compromise the
safety of the system. In particular, the supporting robot should not impose an additional threat to
the human operator and/or the task at hand.

FP3 IAM4RAIL - GA 101101966 96 | 118 Interne

Intervention type IV3 (Semi-automatic intervention): Intervention processes of type IV3 are
characterized by the cooperation/collaboration of human and robot. Certain elements of the
intervention process are automated, while other elements are performed by a human. This
corresponds to Level 2 – human/machine teaming – in EASA’s classification of AI applications in
aerospace. For example, a defective infrastructure part could be automatically removed by a
robot, and a human could install a new replacement part.
The main additional concern in a safety proof for intervention processes of type IV3, compared to
type IV2, is to show that issues from the automated process will be noticed and corrected by the
human partner.

Intervention type IV4 (Fully autonomous intervention): Intervention processes of type IV4 are fully
performed by a robot without any human input or actions. For example, an automated Balise
installation robot could travel to a dedicated location, determine the installation points on the
appropriate sleeper, drill holes, place a Balise and bolt it down, all fully automatic.
For fully automatic intervention processes, it must be shown that the process execution itself
cannot harm people. For example, it must be assured that a fully automated disinfection robot will
only turn on the UVC light or spray chemical if there are no humans in its vicinity. This is similar to
the proof of movement safety. Furthermore, it needs to be shown in the safety assessment that
errors in the process execution are revealed and corrected. Usually, a fully automatic intervention
will be followed by an (automated or manual) inspection or testing of the object. This inspection
must be proven according to its respective inspection type. For example, the automatic Balise
installation robot could use a measurement of the torques of bolts on sleepers and a visual
inspection system to see whether they are attached properly.

FP3 IAM4RAIL - GA 101101966 97 | 118 Interne

To close this chapter 6.3, we propose the following table that shows the different categories into which the 4 WP18 in-situ demonstrators fall.

Table 5 - Categorization of the Project Demonstrators

 Basic
machine
safety

Information safety Movement safety Inspection safety Intervention safety

 No category IC0 IC1 IC2 MS0 MS1 MS2 MS3 MS4 IS0 IS1 IS2 IS3 IS4 IV0 IV1 IV2 IV3 IV4

Multipurpose
Inspection
Robot

X X (X) X X X X (X) X X X

Object
installation
robot

X X X X X

Underbody
inspection robot

X X (X) X X X X X X (X) (X) (X) (X) (X) (X) (X)

Disinfection
Robot

X X X X X X X

In this table the X sign indicates “for accomplishment within the project” and the sign (X) “for future accomplishment after the end of the project”.

The relatively small number of demonstrators in the project means that not all categories can be covered. This is especially true for inspection and
intervention safety, as the 4 robots are evenly distributed between these 2 classes.

FP3 IAM4RAIL - GA 101101966 98 | 118 Interne

5.4 Safety Assessment Report

All the elements mentioned above lead to a central safety assessment report.
If the object of detection is significant, obtaining a safety assessment report from the relevant
applicable assessment body is required. A template for the significance test will be provided within
the project. Depending on the complexity of the project, it is possible to divide the safety
assessment into partial safety assessments.

The final deliverable is a template for the safety report that will be developed alongside
corresponding guidelines. By providing a framework for the safety assessment report, those
integrating robotics into the maintenance field will have a list of requirements fields that need to
be addressed to successfully present the safety argumentation. Furthermore, agnostic to the
maintenance applications and robot technologies there will exist a common standardization
outlining the essential content. This will ultimately reduce the time needed to safely incorporate
robotic technologies into maintenance activities for (a) the manufacturer, (b) those integrating
technology into their processes, and (c) assessment bodies verifying the adherence to the agreed
upon safety processes.

An example of such a safety report would contain clear versioning between drafts and the
appropriate signatures on the final draft.

Overview section: The first section would contain a high-level project overview followed by the
changes in the processes for the target system. Ending this section would be an explanation of the
norms used during the process of risk management.

System definition: A description of the previous system is to be described first following a
description of the target/new system. Along with the new system description is a statement
describing the purpose of the goal of the new system, the target system environment and system
boundaries, functional description of the system, and internal and external interfaces.
Differences between the changes between the old and new systems need to be clearly defined.
This should also include the list of the applicable rules and regulations.
The basis of any safety argument is the identification of potential dangers associated with the
operation of the robot. System definition must include a risk analysis that can be done using
methods like Hazard and Operability Studies (HAZOP), Failure Modes and Effects Analysis (FMEA),
or Fault Tree Analysis (FTA), see references [6], [7] and [8].
If safety features are used, they must be listed. Such features can be integrated into the robot
and/or process to enforce safe operation. With respect to mechanical safety, this can include
emergency stop buttons, guards, interlocks, and safety sensors to prevent or mitigate accidents.
With respect to electric risks, insulations, fuses, circuit breakers, etc. can be used to safeguard
against electrical shocks and overloads. For information processing components, redundancy and
fault-tolerant hardware, monitors, watchdogs and timers can reduce the risk of failures during
operation. For software, coding rules such as “strict exception handling” and “strong typing” can
improve safety, and mechanisms such as “strict access control” and “strong data encryption” can

FP3 IAM4RAIL - GA 101101966 99 | 118 Interne

improve security. For data, backup policies can improve resilience to faults.
Finally, the report should contain an overview of the current safety measures and assumptions of
the risk assessment; i.e., existing templates/certifications that delimit the boundaries of the risk
assessment or operational limitations. It specifies under what circumstances the robot may or
must not be used, which skills are necessary for its operation, which precautions must be taken,
and which maintenance tasks to the robot itself must be performed. Additionally, it should be
specified how incidents are to be handled: where they must be reported, and how it is decided
which changes in the process or design are necessary (incidence response plan). Ideally, this
document also details how to handle software updates and patches (change management plan).

Evaluation of significance: It needs to be clearly stated what methodology was used to perform
the evaluation and the outcome or results of this evaluation. In this section, also details of the
involvement of an external assessment body should be described.

Risk Assessment: In the risk assessment portion of the document the methodology used needs to
be described along with the results and outcomes of the assessment. The risk assessment will likely
that the risk assessment will be done in phases, in which each phase should be described. Example:
initial assessment, categorization of risks, consolidation of risks, etc.

Evidence of safety: Here it should be clear what measures are used to ensure the safety of each
of the components, as well as the system as a whole. There should be transparency between the
identified risks and the corresponding measures addressing said risks. The evidence of the
mitigating strategies for the identified risks could take the form of certificates, norms, explicit,
tests, measures, and processes.

Change in safety aspects: An identification of known or foreseeable ways safety aspects could
change could be also addressed and documented.

6 Towards a Unified Safety Process for Railway Maintenance Robots

While this document is intended to be exhaustive in its presentation of the elements to be supplied
for the safety assessment, it does not yet set out how the work is to be carried out. Not all work
can be parallelized. Some elements feed on others. These logical sequences must therefore be
materialized. Any possibilities for simplifying or bypassing certain stages must be justified and
explained. The development of an adequate process and the associated guidelines will be an
important part of the future work to be carried out in task 18.2 of the work package. Accordingly,
this section of the present document is to be extended at a later stage.

7 Conclusions

In this deliverable we have outlined the basic pillars of a safety case for the process change of
maintenance measures in the rail system. We have described a template for a Safety Plan, which
is divided into 4 chapters (Purpose of the Safety Plan, System Definition, Safety Proof Concept,
Safety Assessment Report).

FP3 IAM4RAIL - GA 101101966 100 | 118 Interne

The first section “Purpose of the Safey Plan” indicates that the safety plan is a covering document
which organizes and references the most important documents in the safety demonstration. For
this reason, this document does not itself contain the concrete performance of the system
components or the scope of the automation. This concretization takes place in the elements of
the safety-proof concept. It also presents the 2 cases for which the document is designed:

- initial verification of the maintenance procedure change regarding the replacement of

manual maintenance activities by a defined automated solution, and

- verification of the maintenance procedure change involving the use of an evolved

 automated solution (the change may come from the procedure, the automated system or

both).

The second section “System Definition” allows the specific project to be broken down into its most
important components and ensures that all aspects of the process change have been considered
for a proper safety verification. The overarching goal of the system definition is to create
transparency on the purpose, intended environmental context, boundaries, and functions of the
system.

The third section “Safety Proof Concept” structures the path that is to be followed to provide proof
of safe operation. The path has been organized around 5 categories. Four of those five categories
are based on the macroscopic machine functions (basic machine safety, movement safety,
inspection safety and intervention safety). A unified categorization would have been more difficult
to achieve by working on technologies or components. These can be very varied in robotics. The
last category (Information safety) is an exception. It concerns the communication of information
between the robot and its environment. This enables us to emphasise cybersecurity issues, which
are becoming increasingly important in our society.
For each category, we established what had to be demonstrated. Our original intention was also
to suggest ways of establishing the "how" for each category. Unfortunately, it became clear to us
that, here too, technological diversity makes it impossible to unify methods for measuring the
effectiveness of devices in meeting safety requirements.

All the elements mentioned above lead to the fourth and final section, a central safety assessment
report.

This deliverable is the fruit of initial work that needs to be enriched. We will be working on two
types of improvements over the coming months:

• We'll be developing or continuing to develop templates and guidelines to help write the

safety plan sections themselves.

o This will be the case for "basic machine safety", where the relevance and

contribution of the numerous standards to risk management in the railway

context will be highlighted.

o For the "system definition" a first template has been established. Its application

to several of the project's demonstrators should enable it to be enriched.

FP3 IAM4RAIL - GA 101101966 101 | 118 Interne

o A guide to the correct classification of a system in the categories useful for the

"safety proof concept" will probably be necessary.

o A template for the safety report will be developed alongside corresponding

guidelines.

• While we have specified here the elements to be supplied for the safety assessment, we

have not detailed the way in which the various necessary activities are to be carried out.

The second axis will be the development of a Unified Safety Process for Railway

Maintenance Robots.

FP3 IAM4RAIL - GA 101101966 102 | 118 Interne

8 References

[1] European Commission 2020: Commission Report on the safety and liability implications of Artificial Intelligence,
(COM/2020/64 final), https://commission.europa.eu/publications/commission-report-safety-and-liability-
implications-ai-internet-things-and-robotics-0_en

[2] European Parliament and Council 2023: Regulation (EU) 2023/1230 of the European Parliament and of the Council
of 14 June 2023 on machinery, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02023R1230-
20230629

[3] European Parliament 2023: Artificial Intelligence Act. https://www.europarl.europa.eu/doceo/document/TA-9-
2023-0236_EN.html

[4] European Agency for Safety and Heaalth at Work: Directive 2006/42/EC - machinery directive
https://osha.europa.eu/en/legislation/directives/directive-2006-42-ec-of-the-european-parliament-and-of-the-
council

[5] European Parliament: Proposal for a regulation of the European parliament and of the council on machinery
products – COM(2021) 202, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021PC0202

[6] EN 50128 Railway applications - Communication, signalling and processing systems - Software for railway control
and protection systems

[7] European Commission: Commission Implementing Regulation (EU) No 402/2013 on the Common safety method
for risk evaluation and assessment and repealing Regulation, https://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:121:0008:0025:en:PDF

[8] NF EN ISO 12100 Safety of machinery - General principles for design - Risk assessment and risk reduction

[9] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human-robot collaboration in industrial settings: Safety, intuitive
interfaces and applications,” Mechatronics, vol. 55, pp. 248-266, Nov. 2018. doi: 10.1016/j.mechatronics.2018.02.009,
https://www.sciencedirect.com/science/article/abs/pii/S0957415818300321

[10] IEC 61508 Functional safety of electrical/electronic/programmable electronic safety-related
systems

[11] EN 50129 Railway applications - Communication, signalling and processing systems - Safety-related electronic
systems for signalling

[12] IEC 60825-1 Safety of laser products

[13] ISO 10218: Robots and robotic devices — Safety requirements for industrial robots, Part 2: Robot systems and
integration

[14] ISO/TS 15066: Robots and robotic devices — Collaborative robots.

https://commission.europa.eu/publications/commission-report-safety-and-liability-implications-ai-internet-things-and-robotics-0_en
https://commission.europa.eu/publications/commission-report-safety-and-liability-implications-ai-internet-things-and-robotics-0_en
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02023R1230-20230629
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02023R1230-20230629
https://www.europarl.europa.eu/doceo/document/TA-9-2023-0236_EN.html
https://www.europarl.europa.eu/doceo/document/TA-9-2023-0236_EN.html
https://osha.europa.eu/en/legislation/directives/directive-2006-42-ec-of-the-european-parliament-and-of-the-council
https://osha.europa.eu/en/legislation/directives/directive-2006-42-ec-of-the-european-parliament-and-of-the-council
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021PC0202
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:121:0008:0025:en:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:121:0008:0025:en:PDF
https://www.sciencedirect.com/science/article/abs/pii/S0957415818300321

FP3 IAM4RAIL - GA 101101966 103 | 118 Interne

PART D – VISION OF ROBOTICS’

IMPACT

FP3 IAM4RAIL - GA 101101966 104 | 118 Interne

1 Executive Summary

Objective
Today, the robotics sector invests little in maintenance applications, and even less in railway
maintenance applications. The modularity is a technical policy able to make the railway
maintenance sector attractive through the massification of robotic components.
By better highlighting the tangible benefits on a large scale that end-users and techno-providers
will be able to derive from railway robotics, it is a question of giving confidence so that the
necessary investments take place. The benefits we are talking about are not only economic. They
may concern the availability of assets, the health and motivation of workers...

Offering a vision of the impacts of robotics on railway maintenance means creating the conditions
for the Demand Readiness Level and the Manufacturing Readiness Level to progress together with
the Technology Readiness Level.

In the first year of the project, it was not possible to produce a concerted vision of the impact of
robotics on railway asset management. Nevertheless, this document presents the methodologies
investigated and those selected for subsequent implementation.

Methodology
The methods that can help establish a vision can be bottom-up (concatenation of use cases) or
top-down (high-level vision for which compatibility with practical cases is ensured). Bottom-up
methods do not seem suitable to us because to be sufficiently robust, they require a significant
deployment of resources.
Different top-down methods were therefore researched, proposed to the work-package partners
and selected for implementation in the coming months.

Conclusion
Possible approaches fall into 2 families: bottom-up and top-down methods. Due to the difficulties
associated with the generalization stage, bottom-up approaches were quickly discarded. Various
alternative top-down methods were therefore examined.
The approach adopted is a mix between a top-down analytical approach and a top-down fictional
approach.
The analytical approach is based on a breakdown of maintenance into more basic processes. For
each of the elementary processes, a short list of relevant indicators (in the context of the
introduction of robotics) is proposed. Reference levels are determined. The last step consists of
evaluating the evolution of these indicators on a scale of approximately 5 years.
The fictional approach is inspired by Red Team Defense offered by Paris Sciences & Lettres to the
French armies. They propose, over a longer time horizon, futures for which the probability of
occurrence is not the key point. It is the reactions to be implemented in the face of these new
situations that have important value. creating a collective imagination in addition to more
traditional commercial relationships can also be a strong glue in a new-born ecosystem.
The total duration of the selected approach is 18 months, based on 4 stages for the analytical
approach and on an iterative work of 6 to 9 months for the fictional part.

FP3 IAM4RAIL - GA 101101966 105 | 118 Interne

2 Abbreviations and acronyms

Abbreviation / Acronym Description

TRL Technology Readiness Levels (TRL) are a type of
measurement system used to assess the maturity level
of a particular technology. Each technology project is
evaluated against the parameters for each technology
level and is then assigned a TRL rating based on the
projects progress. There are nine technology readiness
levels. TRL 1 is the lowest and TRL 9 is the highest.

DRL "Demand Readiness Level" is an additional scale to
Technology Readiness Level, which will relate to the
degree of maturity for the expression of a need by a
customer on a given market including the lead markets
for eco-innovation.

MRL The manufacturing readiness level (MRL) is a measure to
assess the maturity of manufacturing readiness, similar
to how technology readiness levels (TRL) are used for
technology readiness. They can be used in general
industry assessments,[1] or for more specific application
in assessing capabilities of possible suppliers.

KPI Key Indicator Performance

WP Work-Package
UIC Union Internationale des Chemins de Fer – International

union of railways

3 Objective/Aim

Today, the robotics sector invests little in maintenance applications, and even less in railway
maintenance applications. To obtain the robots they need, the rail industry must therefore finance
all the development work. However, the fleets involved in each type of maintenance operation
are relatively small (a few dozen robots). Amortising developments on such small populations is
complex.
One response to this problem is the modularity policy put forward by this work-package. Although
modularity maximizes the chances of profitability for both technology providers and end users, it
does not provide all the answers when it comes to the long-term viability of robotics in
maintenance. Modularity means that the entry ticket can be passed on to a greater number of
applications. It is therefore more likely to be bearable. But at this point, they are still just words.
By better highlighting the tangible benefits on a large scale that end-users and techno-providers
will be able to derive from railway robotics, it is a question of giving confidence so that the
necessary investments take place, so that this entry ticket is distributed among stakeholders.
The benefits we are talking about are not only economic. They may concern the availability of

FP3 IAM4RAIL - GA 101101966 106 | 118 Interne

assets, the health and motivation of workers...

Offering a vision of the impacts of robotics on railway maintenance means creating the conditions
for the Demand Readiness Level and the Manufacturing Readiness Level to progress together with
the Technology Readiness Level.

In the first year of the project, it was not possible to produce a concerted vision of the impact of
robotics on railway asset management. Nevertheless, this document presents the methodologies
investigated and those selected for subsequent implementation.

4 Investigated methodologies

Nowadays, the market has extremely get developed, and the introduction of digitalization, new
technologies, AI, IoT and so on become a must. In this perspective, companies have introduced
digitalization to all their strategic processes including maintenance as it is considered as one of the
development levers of many businesses since it has a direct impact on many KPIs continuously
monitored.

Defining and monitoring KPIs aimed at getting a global view of the benefit introduced by robotics
in the railways environment is not simple, but necessary. Rational approaches to the theme
require time to be investigated so as to avoid possible conclusions which are correct for a certain
subsystem of possible applications of robotics, but not as a whole.

In addition, Authorities still need to adhere to appropriate specifications that can encompass the
use of robotics in the railway sector, especially in strategic processes such as rail maintenance.

4.1 Types of approach

Impact assessments carried out to date in the rail industry have been at the level of a single use
case or a small group of use cases. The investigated use cases remain fairly limited compared with
the volume of possible applications for robotics in the maintenance sector, or even more broadly
in railway asset management.

Therefore, it is difficult to use these documented cases to interest a vast ecosystem over the
medium term, and a more global approach is needed.

FP3 IAM4RAIL - GA 101101966 107 | 118 Interne

Figure 9 - Types of approach

We could reason on a micro scale for a large number of use cases, then aggregate them to move
on to the macro scale (bottom-up approach). However, this would be a long and costly process,
so we propose to use direct macro-scale approaches (top-down approaches). In these macro
methods, we can use an analytical decomposition or, at the opposite end of the cognitive
spectrum, a method involving the imagination and based on fiction.

A final type of top-down approach is the reuse of macroscopic studies already carried out in other
industrial sectors, and their extrapolation to the rail maintenance sector.

4.1.1 Bottom-up Approach

We have just indicated that the bottom-up approach is not relevant to establishing a vision. So we
won't describe it in detail here. There are, however, elements derived from this approach that can
be used in top-down approaches.

FP3 IAM4RAIL - GA 101101966 108 | 118 Interne

Figure 10 - Bottom-up approach

During the first year of the project, some KPIs have been defined for each use case involved within
the WP18, in order to concretize possible gainable results from the experimental campaigns and
in order to take into account the fact that demonstrators will not be at the TRL level of a system
ready for industrialization. Concatenating and generalizing the elements established for these use
cases is akin to a bottom-up approach. Once again, this is not what we are going to do.
Nevertheless, the various indicators mentioned at the beginning of this paragraph should inspire
top-down approaches.

4.1.2 Top-down extrapolation approach

Macroscopic prospective studies of the impact of robotics do exist42 43 44 45. They may concern a
particular industrial sector or society as a whole. Their conclusions are not always consistent with
each other, and the data and models used to establish them are sometime missing.

Some bodies, such as the International Federation of Robotics, offer annual reports providing

general information and trends that could also be exploited46.

42 https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-
mean-for-jobs-skills-and-wages#/

43 https://www.aeaweb.org/articles?id=10.1257/pandp.20201003

44 https://mitsloan.mit.edu/ideas-made-to-matter/a-new-study-measures-actual-impact-robots-jobs-its-significant

45 IFR position papers : https://ifr.org/papers

46 https://ifr.org/free-downloads/

https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages#/
https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages#/
https://www.aeaweb.org/articles?id=10.1257/pandp.20201003
https://mitsloan.mit.edu/ideas-made-to-matter/a-new-study-measures-actual-impact-robots-jobs-its-significant
https://ifr.org/papers
https://ifr.org/free-downloads/

FP3 IAM4RAIL - GA 101101966 109 | 118 Interne

A major difficulty with this approach lies in the keys to be used for extrapolation. To illustrate this
difficulty, let's take an example. The table below compares the number of industrial robots
installed on automotive production lines in 4 of the world's most robotic countries (in terms of
annual units deployed), as well as the variation between 2021 and 2022.

Table 6 - Industrial robots deployment in the automotive industry

Country number of cars
produced

number of robots
installed

change 2022 vs 2021

China 27 M 73 k +26%
US 10 M 14 k +47%

Germany 3,7 M 6,7 k -27%

Korea 3,8 M 5,4 k -5%

While it's easy to keep track of the number of new robots installed each year (just follow the flow
out of roboticists' factories), it's much more complex to know at a given moment the number of
robots installed. The number of robots used to produce a vehicle would be an interesting indicator,
but it is not readily available. It's more complex to know when a robot has been decommissioned.
According to our table, Germany and China are apparently moving in completely opposite
directions. Does this reflect a different positioning in the robot acquisition cycle (Germany renews
its robots while China builds new factories)? Does it reflect a more intense robotization effort in
China than in Germany for an identical positioning in the acquisition cycle (whereas the lower cost
of labor might suggest an opposite trend)? Is it simply a reflection of a sector that is growing in
China and contracting in Germany, even when positioned identically in the acquisition cycle? It's
clear that figures can be used to support a preconceived discourse, but that using them objectively
is complex. This is all the more true as the figures used reflect punctual phenomena (number of
annual installations) and not a real contribution to the act of production.

4.1.3 Top-down analytical approach

This approach will be based on 4 major steps.

FP3 IAM4RAIL - GA 101101966 110 | 118 Interne

Figure 11 - Diagram of the top-down analytical approach

4.1.3.1 breakdown

As a first step, we propose to break down maintenance, a complex function of the railway system,
into a set of elementary functions. Many international norms started to give more interest to
maintenance processes and therefore they have deployed specific rules to handle them.
Regarding the notion of maintainability of equipment, the French NF X60-000 standard presents
the guidelines for designing a maintenance process to meet its technical and economic challenges.
It breaks down in particular the maintenance into processes:

• Ensure the health and safety of personnel and protect the environment during

maintenance operations.

• Draw up asset maintenance budgets

• Manage data

• Optimize results

• Design and implement modifications and new work

• Issue operational documentation

• Issue spare parts

• Supply internal and/or external manpower

• Supply tooling, support equipment and information systems

• Provide the necessary infrastructure

• Prepare maintenance operation

• Schedule maintenance operation

Breakdown

•expose the
whole
maintenance
process in
more
elementary
ones

KPI selection

•find the most
relevant KPI
(linked to the
introduction
of robotics)
for all the
subprocesses

Reference levels

•determine
this actual
status of
those KPI

Projection

•determine the
possible
evolution of
those KPI
over the time

FP3 IAM4RAIL - GA 101101966 111 | 118 Interne

• Prevent feared events (preventive maintenance)

o Steering

o Realisation

o Control

• Restore assets to required condition (corrective maintenance)

o Steering

o Realisation

o Control

• Manage Maintenance

o Manage all the maintenance processes

o Draw up the maintenance policy

o Draw up the maintenance strategy

o Report

This can for example be used to have more directed KPI and to sketch out more direct effects
without entering a very micro level.
This breakdown is the result of a first iteration. It has still to be refine with the partners in regard
to other relevant norms (see below).

European norm NF EN 13306 addresses the different terminology used in maintenance
(Preventive, corrective, predictive, etc...). This is probably one of the most important standards
because it describes and gives indications of the maintenance operations to be Implemented. This
standard does not directly propose a breakdown. However, we will endeavor to respect the
terminology of this standard to ensure that our work is properly understood.

In the realm of operational safety management, the NF EN 60300 series of standards provides the
necessary framework. This series addresses the operational safety of products, processes,
systems, or services, encompassing human, software, and hardware aspects. It plays a vital role in
planning and executing dependability activities, incorporating requirements related to safety and
environmental concerns.

The NF EN 16646 standard integrates the management of physical assets within the scope of
maintenance activities. It outlines the interactions between maintenance processes and physical
asset management processes, emphasizing the importance of maintenance throughout the asset's
life cycle.

Additionally, ISO 55001 specifies requirements for establishing, implementing, maintaining, and
improving an asset management system that oversees the life cycle of an organization's assets,
irrespective of asset type. It is designed for use by those engaged in establishing, implementing,
maintaining, and enhancing an asset management system and can be applied to all types of assets
across organizations of various sizes. Effective asset management allows businesses to maximize

FP3 IAM4RAIL - GA 101101966 112 | 118 Interne

their potential for achieving objectives, leading to increased customer and stakeholder
satisfaction, as well as enhanced trust. Maintenance stands out as one of the prominent tools in
assets management, serving as a key component in this integral process.

Quality management system, as described by the ISO 9001 standard, is another critical aspect
affected by the maintenance process. The quality management system of a company covers a vast
scope, and certain maintenance aspects fall under the ISO 9001 standard, such as ensuring the
compliance of production assets and physical assets.

Those standards (NF EN 60300, NF EN 16646, ISO 55001 and to a lesser extent ISO 9001) can be
used to enhance and clarify the breakdown provided by NF X60-000.

4.1.3.2 KPI selection

With our final breakdown we will have to find for each subprocess a short set of the most relevant
KPI (not more than 3 or 4). The stakes are not the same from one process to another. As an
example, let's look at the process of providing operational documentation. The people in charge
are not very prone to serious workplace accidents or musculoskeletal disorders. And even if they
did, maintenance robotics would have little impact on this risk. On the other hand, operators in
charge of production are much more exposed, and maintenance robotics can have an impact on
this risk. It remains to be determined whether workplace health is preferred to accidents or
musculoskeletal disorders.
It is also conceivable that the set of indicators selected might not be the same for rolling stock
maintenance as for infrastructure maintenance.

Some subprocesses may not be directly impacted by the introduction of robots in railway
maintenance activities. For example, in the maintenance manage subprocess, the reporting
activities will not be concerned. Their results will change, but not really the way things are done.
These activities will therefore be identified and excluded from subsequent stages.

To help in the selection of relevant KPIs, we can recall the main motivations that can justify the
deployment of projects involving robots:

• Automated inspection for more precision: Using robots equipped with high-resolution

cameras and sensors allows detailed and accurate inspection of railway rolling stock. These

robots can detect even the smallest defects or signs of wear, helping identify issues before

they become severe.

• Predictive maintenance: By integrating data collected more from sensors on the assets or

through robots with artificial intelligence algorithms, predictive models can be developed.

These models can forecast when specific parts will need maintenance, enabling timely

interventions and reducing the risk of sudden breakdowns. A certain massification of

preventive operations makes it easier to ensure the availability of certain critical resources.

Maintaining a high level of individual attention may require new resources to take action.

FP3 IAM4RAIL - GA 101101966 113 | 118 Interne

Today, robots are the only technology that makes this possible. There may therefore be a

strong link with the "optimization of resources" issue below.

• Preventive maintenance: Robots can perform preventive maintenance tasks such as

lubricating specific parts or adjusting components. This helps prolong the lifespan of assets

and avoids unexpected service disruptions.

• Component replacement: Some component replacement tasks can be automated using

specialized robots. These robots can be designed to handle heavy or complex parts,

improving efficiency, and reducing the risk of workplace injuries.

• Resource optimization: Automating maintenance processes allows more efficient use of

human resources. Operators can focus on high-complexity tasks while robots handle

repetitive and physically demanding activities.

• Detailed reports: Robots can generate detailed reports for each maintenance operation

performed. These reports can include data about the status of components, tasks

performed, and overall conditions of the rolling stock. This detailed documentation is

valuable for future maintenance planning.

• Reduced downtime: Automation of maintenance processes can significantly reduce rolling

stock downtime. Maintenance activities can be performed more quickly and efficiently,

allowing rolling stock to return to service faster.

• Adaptability and scalability: Robotic systems can be designed to be highly adaptable and

scalable. They can be configured to handle different types of rolling stock and can be easily

tailored to the specific maintenance needs of various railways.

• Infrastructural efficiency: novel robotic systems may allow railway undertakings to carry

out inspection tasks by overcoming costly infrastructures, hence allowing a global

optimization of the maintenance plans.

Standardization can also help the approach. European norm NF EN 15341 allows to establish
comprehensive standards for maintenance indicators which incorporates indicators into a
dynamic maintenance process, even able to merge pros of conventional processes. Once
appropriate indicators are defined, their implementation involves the use of dashboards for
monitoring and associated corrective actions. The primary objective is clear: enabling a thorough
assessment and enhancement of the performance of your machinery fleet.

Finally, as already mentioned, the KPIs established in the WP18 use cases will also be used there.

4.1.3.3 Reference levels

The next step is to collect the current reference conditions for all the selected KPIs. These elements
will be collected from WP partners or, where appropriate, from organizations federating rail
players (e.g. UIC).
These reference levels are fairly high-level information that should not be sensitive for sharing
between partners. If any indicators are identified as sensitive during the process, they will be dealt

FP3 IAM4RAIL - GA 101101966 114 | 118 Interne

with only on a relative basis during the rest of the process.

Those reference levels will have to be extrapolated to offer a vision on a European scale. Although
the concatenation of partner data covers a significant part of the sector, it is not exhaustive.

The extrapolation mechanisms we use could relate to the size of the network (in km of track), the
size of the train fleet, the number of passengers carried, the number of employees in the
maintenance sectors, etc. The keys will be clearly outlined.

4.1.3.4 Projections

Taking into account our knowledge of the current situation and the actions currently underway in
industry and research, we will attempt to establish one or more possible trajectories by evaluating
the evolution of the KPIs for each.
The time horizon targeted here is relatively limited (around 5 years). In addition to assessing the
indicators, the conditions for success and the obstacles to implementation will need to be
identified.

Attempting to establish the future is always a perilous undertaking. While we cannot be certain
about the course of events that will be proposed, we will endeavour to establish a highly probable
future, at least given the state of our knowledge.

Figure 3 shows the process not in terms of its temporal organization, but rather in terms of
information flows.

Figure 12 - Impact diagram

4.1.4 Top-down fictional approach

We propose a second, less analytical but more forward-looking approach. For this, we draw on the
"Red Team Defense" approach proposed by PSL to the French armed forces.

FP3 IAM4RAIL - GA 101101966 115 | 118 Interne

More precision can be find on the web site of the project47 and in their publication48.

The Red Team Defense is composed of science fiction authors and scriptwriters. It’s only a part of
the group, but an emblematic one. The other parts are composed by researchers and military
experts (this last part is sometime cold “Blue Team”).

For the initiators, there are 3 essential components to this approach:

• the frontier object: this is a fictional story developed by the Red Team, but not an end in

itself. It serves to link two universes which, a priori, don't talk to each other. It doesn't

matter whether the future described comes true or not. What's interesting are the new

thinking mechanisms it will induce.

• Back and forth: the approach is nourished by regular exchanges between the 3 parts of the

collective mentioned above.

• Illustration: the website illustrates this very well. It's not so much to help tell the stories as

to question the ideas put forward and make their presuppositions visible. This is probably

the aspect that will be least accessible to us for budgetary constraints.

The porject does not propose to reproduce this approach identically. It doesn't have the resources
to finance the work of a collective of authors and writers over a full year. We can take advantage
of the most creative and imaginative minds among the work package partners. We can bring in
the scientific component directly, and draw on our colleagues' professional skills.

We could therefore establish fictional scenarios for the year 2024. Scenarii can be different for
rolling stock and for infrastructure or they can be the same. A scenario describes an evolution over
time, not a fixed situation in a more or less distant future (up to 2050-2060). This evolutionary
character is important. It is the way in which robotics adapts to evolution that needs to be
described. It's important to document the obstacles, the reasons why this future is possible, and
the values that are generated.

This approach was tested at the end of September 2023 with a group of SNCF scientific and
technical experts, with promising results.

5 Selected approach

The work-package partners have chosen to implement an approach that includes top-down
analytical and fictional approaches.
In addition to the rationality of the analytical approach, which is reassuring for our organisations,
we will be able to adopt a more forward-looking approach, capable of giving rise to a shared

47 https://redteamdefense.org/en/home

48 Ces guerres qui nous attendent – EAN : 9782382841792 – Éditions des équateurs

https://redteamdefense.org/en/home

FP3 IAM4RAIL - GA 101101966 116 | 118 Interne

imagination. Imagination alone is not enough to create business relationships. But it can be a
formidable unifying force for a new or existing community.

The main stages of the process will be as follows:

• Breakdown of the maintenance process (analytical approach)

o Input: breakdown coming from the NF X60-000

o Inspiration: listed standards

o Procedure: 1 or 2 online workshop

o End of Phase: January 2024

o Output: finalized breakdown

• KPI (analytical approach)

o Input: finalized breakdown

o Inspiration: listed standards, WP18 use cases KPI, list of the high level targets

o Procedure: 2 or 3 online or physical workshop

o End of Phase: April 2024

o Output:

▪ List of the unaffected subprocesses

▪ KPI shot list for the impacted subprocesses

• Reference levels (analytical approach)

o Input: KPI list

o Procedure: internal work for each involved partner + 1 intermediate online

meeting + 2 finalization meeting

o End of Phase: October 2024

o Output:

▪ Refence levels for all the KPI

• Projection (analytical approach)

o Input: KPI list and their reference levels

o Procedure: 1 physical meeting to launch the work, 3 intermediate online

meeting and 1 physical meeting to close the sequence

o End of phase: February-march 2025

o Output: evaluated scenarios

• Fictional approach

o It will be an iterative process. The frontier object will be established

simultaneously with the technological elements that respond to the new

situations that emerge.

o At this stage we can anticipate 4 iterations, which we will carry out as soon as

the reference levels for the analytical approach have been established.

o End of the phase: ideally synchronized with the end of the analytical phase, but

a delay of around one trimester is possible.

FP3 IAM4RAIL - GA 101101966 117 | 118 Interne

6 Conclusion

The approach adopted is a mix between a top-down analytical approach and a top-down fictional
approach.
The analytical approach is based on a breakdown of maintenance into more basic processes. For
each of the elementary processes, a short list of relevant indicators (in the context of the
introduction of robotics) is proposed. Reference levels are determined. The last step consists of
evaluating the evolution of these indicators on a scale of approximately 5 years.
The fictional approach is inspired by Red Team Defense offered by Paris Sciences & Lettres to the
French armies. They propose, over a longer time horizon, futures for which the probability of
occurrence is not the key point. It is the reactions to be implemented in the face of these new
situations that have important value. creating a collective imagination in addition to more
traditional commercial relationships can also be a strong glue in a new-born ecosystem.
The total duration of the selected approach is 18 months, based on 4 stages for the analytical
approach and on an iterative work of 6 to 9 months for the fictional part.

7 References

NF X60-000 Industrial maintenance - Maintenance function
NF EN 13306 Maintenance - Maintenance terminology
NF EN 16646 Maintenance - Maintenance within physical asset management
ISO 55001 Asset management - Management systems - Requirements
ISO 9001 Quality management systems - Requirements

FP3 IAM4RAIL - GA 101101966 118 | 118 Interne

8 Appendices (all parts included)

All the appendix are available aside this document in the ZIP file.

Appendix A

See file Appendix_A_WP18_BANNER.pdf

Appendix B

See file Appendix_B_Selection_Criteria_Analysis_v01.xls

Appendix C
See file “Appendix_C.pdf”

Appendix D
See file “Appendix_D_Template_SafetyPlan_IAM4RAIL.docx”

Appendix E
See file “Appendix_E.pdf”

Appendix F – Draft version of the System Definition template – ARGO example
See file "Appendix_F_System_Definition_Template_-_ARGO_example.pdf".

	1 Executive Summary
	2 Abbreviations and acronyms
	3 Background
	4 Objective/Aim
	5 Work-package roadmap
	6 Conclusion
	6.1 Middleware selection
	6.2 Advanced modularity
	6.3 Safety assessment
	6.4 Vision of robotics impacts on railway maintenance

	PART A – MIDDLEWARE SELECTION
	1 Executive Summary
	2 Abbreviations and acronyms
	3 Objective/Aim
	4 Methodology
	4.1 Survey of robotic software frameworks
	4.1.1 Common Middleware vs. Software Development Framework
	4.1.2 Initial data selection
	4.1.3 Preliminary analysis and filtering
	Eligibility elimination

	4.1.4 Candidate frameworks detailed analysis
	ArmarX
	Fawkes
	GeNOM
	MOOS and MOOS-IvP
	ORiN
	Orocos
	ROCK
	ROS/ROS2
	RT-Middleware
	SmartSoft
	YARP

	4.2 Common requirement criteria
	4.2.1 Final set of technical criteria
	4.2.2 Final set of “social” criteria

	4.3 Selection of the common middleware framework
	4.3.1 Justification for selecting ROS2

	5 Conclusions
	6 References
	PART B – ADAVANCED MODULARITY
	1 Executive Summary
	2 Abbreviations and acronyms
	3 Objective/Aim
	4 Methodology
	5 Clarification of the concept of advanced modularity
	5.1 Quality
	5.1.1 from "we can talk" to "we understand each other"
	5.1.2 To an automated matching process
	5.1.3 Configuration management
	5.1.4 Complexity management

	5.2 Pure productivity
	5.2.1 To automated links
	5.2.2 Automated code generation
	5.2.3 More visual tools
	5.2.4 Modularity for safety demonstration
	5.2.5 Compatibility mapping
	5.2.6 Separation of concern

	5.3 Support for the business model
	5.3.1 Remuneration mechanism
	5.3.2 Propagation of licenses

	5.4 Live Support
	5.4.1 Online monitoring

	6 Technical elements required for our advanced modularity
	6.1 Data structure for system component properties
	6.2 Component properties database
	6.3 Automatic property-extractor
	6.4 Component properties visualizer
	6.5 Data structure for the hard- and software architecture and data flow model
	6.6 Tool to design this model
	6.7 Tool that generates the robot software distribution from a model
	6.8 Automatic code generator
	6.9 Tool for checking incompatibilities and missing information in a model
	6.10 Quality check
	6.11 Visual launching/stopping tool

	7 Impacts for developers
	8 Conclusions
	9 References
	PART C – SAFETY ASSESSMENT
	1 Executive Summary
	2 Abbreviations and Acronyms
	3 Objective/Aim
	4 Methodology
	5 Overview of the Safety Plan Content
	5.1 Purpose of the Safety Plan
	5.2 System Definition
	5.3 Safety Proof Concept
	5.3.1 Basic Machine Safety
	5.3.2 Information Safety
	5.3.3 Movement Safety
	5.3.4 Inspection Safety
	5.3.5 Intervention Safety

	5.4 Safety Assessment Report

	6 Towards a Unified Safety Process for Railway Maintenance Robots
	7 Conclusions
	8 References
	PART D – VISION OF ROBOTICS’ IMPACT
	1 Executive Summary
	2 Abbreviations and acronyms
	3 Objective/Aim
	4 Investigated methodologies
	4.1 Types of approach
	4.1.1 Bottom-up Approach
	4.1.2 Top-down extrapolation approach

	Some bodies, such as the International Federation of Robotics, offer annual reports providing general information and trends that could also be exploited .
	4.1.3 Top-down analytical approach
	4.1.3.1 breakdown
	4.1.3.2 KPI selection
	4.1.3.3 Reference levels
	4.1.3.4 Projections

	4.1.4 Top-down fictional approach

	5 Selected approach
	6 Conclusion
	7 References
	8 Appendices (all parts included)

