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Introduction 
 

The implementation of fully automated train operation (ATO) up to unattended operation 
in Grade of Automation 4 (GoA4) represents a significant milestone in the railway 
industry. The implementation of Automated Train Operation (up to GoA4) will 
undoubtedly yield multiple benefits, including: 
 
 A reduction in environmental impact through the decrease in energy consumption. 
 An enhancement of public transport attractiveness through the decrease in operating 

costs, enabling public authorities to invest in better services. 
 An improvement in the quality of service, as shorter and more predictable journey 

times lead to increased punctuality and a higher quality of service, thereby attracting 
more passengers to use public transport. 
 

These benefits are in line with the vision of a fully automated rail system that enhances 
interoperability based on the European Train Control System (ETCS) specifications. In 
this work, two key areas relevant to Automatic Train Operation (ATO) up to GoA4 are 
addressed: the novel reference architecture for GoA3/4 systems derived from the 
X2Rail-4 project, and the ATO driving functions, including intelligent algorithms designed 
to optimize speed profiles and automatic tracking control. 

Novel reference architecture for GoA 3/4 automation level 
 

The R2DATO project [1], which is grounded in the X2Rail-4 project [2] and relevant 
standards such as the Technical Specification for Interoperability – Control Command 
and Signalling (TSI – CCS) [3], is focused on developing innovative solutions that 
facilitate the rapid and cost-effective implementation and migration of digital and 
automatic train operation systems. Additionally, the R2DATO project [1] is currently 
updating and developing system requirements for ATO up to GoA 4, including the novel 
reference architecture that was originally established in the X2Rail-4 project [2]. The 
framework of this novel reference architecture is illustrated in Figure 1 and represents 
an advancement from the traditional reference architecture described in the 
ERTMS/ATO System Requirement Specification, SUBSET-125 [4]. 
The framework of the novel reference architecture encompasses both trackside and 
onboard systems. The upper part of the framework is focused on the trackside 
components, which includes the Traffic Management, Train Management, Train Control, 
Digital Map (DM), Operational Execution (OE), Mission Data (MD), and Train Data (TD). 
On the other hand, the lower part of the framework is dedicated to the onboard 
components, which includes the Train Protection, Localization (LOC), Train Control and 
Monitoring System (TCMS), and four novel GoA 3/4 components, namely Automatic 
Driving Module (ADM), Automatic Processing Module (APM), Repository (REP), and 
Perception (PER). 



 

 

Figure 1: Framework of the novel reference architecture for GoA 3/4 systems based on X2Rail-4 project [2]. 
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GoA 3/4 components 
 

The aforementioned reference architecture is composed of several components, 
including four GoA 3/4 components. The remaining components are detailed in the 
Deliverable D5.1 WP5 GoA3/4 Specification document from the X2Rail-4 Project [2].  
 
1. Perception (PER): The PER module is considered as the “eyes” of the driver in 

GoA3/4 systems, comprising a group of onboard sensors with the aim to evaluate 
the Physical Railway Environment and enhance the perception of the driver, 
encompassing not only visual sensing but also other factors that contribute to safety 
and dependability in operations. The perception of the external environment involves 
the detection and recognition of static or dynamic objects of various types that may 
impact the operation of the train, such as a fallen tree on the tracks or a road vehicle 
on an unprotected level crossing.  

2. Automatic Processing Module (APM): The APM module is regarded as the “brain” 
of the driver in GoA3/4 systems, as it is responsible for emulating the responsibilities 
of the driver and train attendant in responding to incidents. This onboard module 
oversees the execution of missions, safe reflexive actions, evaluated reactions, and 
safety procedures that occur during the mission, including both train and track 
incidents. 

3. Repository (REP): This onboard module is designed to collect, check and filter data 
received from various trackside modules such as DM (segment profile static data), 
OE (journey profile data, segment profile dynamic data), MD (mission profile data), 
and TD (train data set), according to the requirements of the on-board components, 
and subsequently transmit it via the relevant interfaces.  

4. Automatic Driving Module (ADM): This module is concerned as the “hearth” of the 
train operation since GoA2 and is responsible for execute the driving functions which 
allow to driving the train automatically. According to the SUBSET-125 [4], the ATO 
driving functions are as follows: 
 
 Supervised Speed Envelope Management (SSEM): This function computes 

the maximum speed that the train can be achieved without ETCS intervention. 
 Automatic Train Stopping Management (ATSM): This function indicates the 

speed profile to be used to stop the train accurately at the operational stopping 
point. 

 Time Table Speed Management (TTSM): This function takes into account the 
information from the Journey Profile (JP) and the Segment Profile (SP) to 
calculate the optimal speed profile to run the train in the most energy-efficient 
way while respecting the infrastructure constraints and timing points. 
Furthermore, the optimal speed profile should be continuously updated based on 
the current position and speed of the train. 

 Traction/brake control: This function is primarily responsible for the accurate 
and effective generation of ATO output commands to be used to follow the 
optimal speed curve calculated from TTSM, ATSM, and SSEM. 
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Smart algorithms for ATO driving functions. 
 

As previously stated, the basic structure of ATO driving functions comprises two key 
components, which collaboratively fulfill the operational requirements of automation and 
efficiency [5]. These two components are: 
 
 Speed profile optimization, which is typically formulated as an optimal control 

problem based on the train operation model and employs smart algorithms to 
determine the optimum speed profile. 

 Automatic tracking control, which utilizes control methods to ensure that the train 
can track the optimal speed profile precisely and operate safely and smoothly. 

Speed Profile Optimization Techniques 
 

Upon examining the existing literature, various techniques have been identified for 
optimizing train speed profiles. These techniques include analytical approaches, 
numerical methods, and genetic algorithms. 
 

1. Analytical approaches: The issue of determining the most efficient method for 
controlling the movement of a train was initially raised by Milroy [6], who obtained 
a basic velocity profile and suggested it as an optimal strategy by applying the 
analytical approach known as the Pontryagin maximum principle. Similarly, Asnis 
[7] examines the various types of optimal trajectories that satisfy the maximum 
principle. On the other hand, Howlett [8] used the Pontryagin maximum principle 
to discover the precise optimal strategy for achieving a minimum cost journey. 

2. Numerical methods: This type of method has relatively fewer requirements for the 
objective function and can make a trade-off between optimization performance 
and computational time. Miyatake [9] introduced three numerical methods 
(dynamic programming, gradient method, and sequential quadratic problem) to 
solve the optimal control problem with constraints for finding energy-saving train 
speed profiles. On the other hand, the optimal control problem for minimizing 
energy consumption by a train, as proposed by Ko [10], has been numerically 
solved using Bellman's Dynamic Programming algorithm within an acceptable 
computational timeframe. This method can be applied to actual complicated 
running conditions. Similarly, Thorlund [11] introduced a novel dynamic 
programming approach to find optimized speed profiles that result in reduced 
energy consumption. 

3. Genetic algorithms: Genetic algorithms (GA) have been effectively utilized in 
coasting control optimization to determine the optimal train trajectory [12]. In his 
work, Chang [13] proposed a GA for determining the number of coasting points. 
The results of this approach demonstrated promising performance in the trade-off 
between journey time and energy consumption. Similarly, Wong [14] applied a 
genetic solution to search for coasting points. The number of coasting points was 
dynamically allocated into the chromosomes, which enhanced the practical 
application of this approach. Söylemez [15] proposed a novel method that utilized 
artificial neural networks and genetic algorithms to optimize coasting points for 
trains. 
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Automatic Tracking Control Techniques 
 

Upon generating the optimal speed profile, the subsequent step in train operation 
involves devising an effective and accurate method to control train movements, ensuring 
precise tracking to the speed profile and maintaining safety and smoothness. Literature 
review reveals several techniques for automatic tracking control, including PID 
controllers, sliding mode controllers, and adaptative control methods. 
 

1. PID controllers: The most widely used train speed control method of ATO is the 
PID controller, which continuously calculates the error value between the 
measured train speed and recommended speed, and adjusts the control 
command to minimize the speed tracking error over time. The existing challenges 
in this kind of controller is how to determine the best PID coefficients considering 
that the parameters of train models are always affected by some external factors 
in daily operations, such as weather condition, normal deterioration and 
mechanical wear. These parameters variations will inevitably reduce the 
performance of PID controller if the PID coefficients are fixed.  
To solve this challenge, some studies are developed novel solutions. One of such 
is the combination of fuzzy control with PID control to provide advantages about 
the object description, fuzzy rules can be designed with prior knowledge of human 
drivers, and the parameters of PID controller could be adjusted dynamically so to 
improve the performance. Ke [16] determined the speed commands of the ATO 
system by manipulated by the fuzzy-PID gain scheduler under acceleration, 
deceleration and jerk restrictions. Similarly, Yang [17] proposed a fuzzy-PID 
solution to meet the performance demand of the freight train control.  

2. Sliding Mode Controllers: These controllers are recognized for their high 
effectiveness in various practical systems, as numerous studies have 
demonstrated [18], [19], [20]. Incorporating an appropriate nonlinear sliding 
surface in sliding mode control (SMC) can ensure that the closed-loop system's 
state converges to a balanced point within a finite time frame [21]. Some studies 
focus on SMC solutions for automatic tracking control. Wu [22] focused on the 
control problem of precise and comfortable train operation through the use of 
adaptive terminal sliding mode control, introducing a novel terminal sliding surface 
to ensure stability and robustness. Conversely, Yao [23] applied robust adaptive 
sliding mode control strategies to study the position and velocity tracking control 
problem of trains. 

3. Adaptative Control Methods: The controller in question is employed in high-speed 
applications where achieving train speed control presents a formidable challenge 
[5]. This is attributed to the intricate nature of the operation and the rapid dynamics 
of the train. In this regard, certain studies opt for the implementation of adaptive 
control techniques to manage the intricacy and uncertainty associated with train 
operation models. Yang [24] presented a mixed Hଶ Hஶ⁄  controller, which is 
synthesized through the use of linear matrix inequalities to attain the objective of 
speed command tracking. Conversely, Chou [25] proposed an adaptive control 
system for heavy-haul train applications, which is adaptive to various optimization 
objectives, including energy consumption, velocity tracking, and in-train force. 
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Future works 
 

Optimizing speed profiles and automatic tracking control are crucial tasks that 
guarantees efficient, dependable, and secure train operations. Traditional algorithms 
use kinematical equations to determine the train speed profile, which serves as the 
target of train control. However, these equations rely on assumptions made in empirical 
formulas, which can lead to potential errors [26]. With the advancement of artificial 
intelligence, various challenges and opportunities arise in the development of intelligent 
algorithms. The following highlights research works and emergent trends in speed profile 
generation and automatic tracking control. 
 
Reinforcement learning aims to train a system to control a particular environment in order 
to maximize a numerical performance associated with a long-term objective. Unlike deep 
learning, reinforcement learning involves a trial-and-error process in which the agent 
learns to make decisions on its own without the assistance of a pre-existing dataset [27]. 
The application of artificial intelligence (AI) algorithms, particularly deep learning and 
reinforcement learning, has led to the development of AI algorithms to address the 
challenges of optimizing train speed profiles and automatic tracking control in various 
railway systems. To address the speed curve optimization problem for urban metro 
trains, Yin [28] proposed two intelligent train operation algorithms, one based on an 
expert system and the other on reinforcement learning (RL). In contrast, Ning [29] 
presented a novel train trajectory optimization approach for high-speed railways that 
utilizes the deep deterministic policy gradient (DDPG) method to generate optimal train 
trajectories through offline training based on the agent's interaction with the trajectory 
simulation environment. On the other hand, Chen [30] proposed an automatic driving 
control method for urban rail trains based on the Deep Q Network algorithm. Wang 
proposed a novel decision-making framework, which consists of two parts including a 
reference speed trajectory generator and a backstepping tracking controller. The speed 
trajectory generator is responsible for calculating the reference speed trajectory 
dynamically using hybrid deep learning structure. Based on the backstepping technique, 
the designed tracking controller takes the reference speed trajectory as the tracking 
target, and guarantees that the pair-wise distance between adjacent trains is stabilized 
to a given steady value within a safe range. 

Conclusions 
 

The current work highlights a novel reference architecture for GoA3/4 from the X2Rail-4 
Project, which comprises four innovative components such as Repository (REP), 
Perception (PER), Automatic Processing Module (APM), and Automatic Driving Module 
(ADM). The objective is to bring attention to the capabilities of ATO up to the GoA4 
system requirements specification, a subject that has been comprehensively explored 
in recent years.  
Furthermore, this work delved into the operational functions of ATO systems, with a 
particular focus on methods, approaches, and techniques for addressing train operation 
challenges. Typically, these challenges are addressed by implementing optimized speed 
profiles and train speed controllers. The incorporation of smart algorithms, particularly 
those utilizing artificial intelligence and machine learning, presents a substantial 
opportunity to improve the accuracy, efficiency, and safety of train operations. Through 
the continuous refinement of these algorithms and the incorporation of real-time data 
and adaptive control techniques, the railway industry can attain unparalleled levels of 
automation and dependability, ultimately contributing to a more sustainable and efficient 
transportation system. 
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