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Extended abstract 

1. Context - Progresses in GNSS-based solution introduction in rail 

applications 
 

GNSS (Global Navigation Satellite System) is now used in most of our travels and each of our smartphone apps. 

Most of the usages are not safety-critical. But Europe identified GNSS for more applications and  to be integrated 

in rail in general as part of the toolset to help railway to contribute to reduce transport carbon footprint. To 

increase the use of trains in European transports, railways must improve their attractiveness for passengers and 

freight, but also increase reliability, availability and efficiency by reducing capital expenditure and operational 

costs. GNSS is part of the global digitalization scheme of freight that aim to offer added value to the clients 

knowledge of accurate time of arrival, continuous monitoring of transport conditions (temperature, 

humidity...)...  

But a major challenge will be to reach stringent applications and in particular, GNSS is today seen as a realistic 

and serious game changer for the future of the ERTMS (European Rail Traffic Management System). 

The localisation function is today performed with both odometry and balises. Odometer provides a continuous 

train position in time from a reference point. But as the distance delivered by the odometer shows a growing 

bias with distance, due to wear and wheel sliding, the use of on-track balises allows to reduce this error. Future 

systems will be based on on-board localisation solutions with GNSS receivers. It will allow the development of 

new concepts for moving blocks, virtual coupling and automation. Its use for train integrity is also investigated. 

But the the environmental conditions of track and surroundings configuration, i.e, tunnels, dense urban areas 

or vegetation often degrade positioning performance and thus its efficiency and safety. Indeed, GNSS satellites 

are moving and their visibility (availability and relative position from the receiver) vary with time. Moreover, for 

optimal performance, the system requires open sky environments, which are the cases of most of the 

aeronautical uses but not of train uses. Trains often circulate in areas where signal reception can be disturbed 

(multipath, intentional or unintentional interferences) and thus, performances degraded. If many progresses 

have been made in the past years to develop more robust receivers [1], multi-sensor solutions [2] or missing 

tools such as Digital Maps [3], some questions remain and in particular related to performance evaluation. How 

can we evaluate performances in a dynamic environment (train, satellite, obstacles)? How can we be sure that 

every configuration has been tested? What is the impact of a failure (inaccuracy, missed detection) on 

operation? 

Some of these issues are addressed in the on-going R2DATO project funded by Europe’s rail.  

2.  The R2DATO project and our contribution 
R2DATO is a project of the Flagship Project 2 (FP2) funded under Europe’s Rail. The aim of R2DATO is to take the 

major opportunity offered by digitization and automation of rail operation and to develop the Next Generation 

ATC and deliver scalable automation in train operations, up to GoA4 for 2030, to enhance infrastructure capacity 

on the existing rail networks. The project is coordinated by SNCF. 

The FP2 R2DATO project is developing technologies in several fields of digital automated up to autonomous train 

operations, seeking a new paradigm in how the rail system is operated, increasing safety, flexibility, capacity, 

performance and reducing energy consumption and costs. The development of positioning technologies and 

their evaluation are part of the scope. Railenium is contributing to several tasks for SNCF. This paper will develop 

the concept investigated in WP34 and 35 devoted to Testing, Validation and Certification and respectively on 

Test Specification and architecture, then Implementation and Certification. 
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2.1 Contributions to the development of a HIL testbed for the evaluation of GNSS-

based solution impact in an ERTMS testbed 

As the performance of satellite-based positioning solutions varies over time and space, it is not be possible to 

exhaustively demonstrate the performance of an on-board solution through lengthy and costly test campaigns. 

Instead, this variety of scenarios can be carried out on a test bench, equipped with tools for simulating realistic 

signal reception conditions and sensor errors. Today, there are no realistic models of these errors in a railway 

environment. The challenge here is to model them considering variations of the track surroundings and satellite 

positions in time. 

GNSS errors are classically divided into global and local errors. Global errors are created by propagation in the 

atmosphere and by the system (orbit, clock, etc.). They are generally known and modelled, which means they 

can be at least partially corrected. Commercial signal simulators incorporate them. Local errors are, by definition, 

closely linked to the propagation environment close to the receiver and its antenna. They are therefore difficult 

to model. To illustrate this difficulty, let's take the example of the urban environment, widely covered in the 

literature due to the number of users and applications that are useful there. Signal propagation in a very dense 

urban environment, such as an American or Japanese business district, will differ from that in a conventional 

European city centre, due to differences in building height, street width, presence or absence of vegetation, etc. 

In the Gate4Rail project, initial error models have been defined for the railway environment, based on 

measurement campaigns [4]. A few representative environments have been proposed (open sky, urban, forest), 

as well as the crossing of a few special features such as bridges and tunnels. However, these models are limited. 

They represent only partially the conditions encountered and are variable over time [5].  

With the development of Machine Learning techniques, the possibility of characterizing and classifying the 

receiving environment from GNSS observations appears to be an interesting tool for characterizing a line. These 

tools have been tested on the classification of indoor/outdoor or urban/open-sky environments [6], sometimes 

adding the classes trees and urban canyons [7]. Limitations of these studies are: the learning databases are 

limited and unrepresentative of the railway environment; the number and choice of environment classes are 

also unsuitable. Finally, the error modelling step for each of the classes does not exist. Using railway data, [8] 

chose to classify environments along a Qinghai-Tibet line into three classes based on a visibility criterion: open 

sky/partial occlusion/severe occlusion. [9] uses classes closer to those of Gate4rail: open 

sky/urban/bridge/tunnel, based on a fairly short database acquired at the experimental site of the Beijing 

Academy of Railway Sciences. None of these models currently includes suburban environments, or the edges of 

wooded lines, for example. 

2.2 Simulation chain 

SNCF-CIM maintains an ERTMS testbed in which hard or software solutions can be tested. Our aim is to allow 

GNSS-based solutions to be inserted in this chain as illustrated on fig. 1. The Stella NGC Suite developed by 

M3Systems is the first element of the chain, capable of generating multi-constellation and multi-frequency GNSS 

signals along any scenario.  A hardware GNSS-based solution shall then be interfaced with the simulator and 

feed the ERTMS chain with a localisation information. The goal of the work presented in this paper is to allow 

the Stella Suite to add specific local errors as representative GNSS pseudo-range errors before use by the GNSS 

receiver.  

The order to assess the methodology, in a further step, one will compare real data with simulation, injecting 

local pseudo-range errors according to representation of the environment as represented in fig. 2. 



5 

 

 

 

Figure 1: Schematic representation of the testing process 

 

 

Figure 2: Local error simulation along a railway line according to the environment type detection 

 

The first investigations done for the R2DATO project consist in: 

– Propose a data-driven context detection model 

– Associate error models to each of the types of environments. 

2.2 Data-driven context detection 

The objective of environment classification can be twofold: 

– Identify environment with semantic similarities: urban areas, streets, track with trees...  

– Or identify environments with GNSS similarities: satellite visibility, pseudo-range errors... 

First category is more intuitive as an operator can easily replay or describe environment and determine a 

series of environments encountered along a line from station A to station B. Second one may be more relevant 

from a GNSS view as literature still shows that “urban” for example cannot be described by a single error 

model anywhere on the globe.  

Three main categories of features can be found in the literature for environmental classification context: signal 

quality variables, based on the C/N0; Constellation characterization such as satellite positions or number of 

satellites; pseudoranges (satellite-to-receiver distance measurements). 

Our models have been trained based on several datasets. These datasets must fulfill several requirements: 

– to represent train movements with multiple speeds; 

– to be taken from different environment, with maximum variability: urban, open-sky, with our without 

trees ... ; 

– the environments must have enough continuity (the train should spend enough time in each 

environment); 

– to have the possibility to identify the environment, a posteriori. 

The last presented requirement brings the major difficulty. For each time of the train journey, we need the 

information of the environment in which the receiver evolved. A simple solution would be to have a human 

operator which could label progressively the journey inside the train during the acquisition. For previously 
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recorded data, it is necessary to use external information. For the CLUG dataset used in our study, several years 

have passed since the recording campaign. Data are composed of RINEX observation and navigation files, as well 

as a ground truth file. 

A large set of Machine and Deep Learning algorithms have been tested and compared. Only an example will be 

given in the following for illustration purpose. Complete analysis will be published in the coming year. 

Primary environment classes are defined, when the track is surrounded by a homogeneous environment (both 

sides of the tracks share the same environmental characteristics): Trees, Buildings, Open-sky (urban), Open-sky 

(rural), Bridge, Post-bridge, Station, Triage, Tunnel, Post-tunnel. Besides these classes, most of the time the two 

sides of the tracks do not share the same properties: for instance, one side is full of trees, and the other one is 

totally empty. In this situation, we define secondary classes, which are mixing of the previous ones: Mixed trees 

and open-sky, Mixed trees and buildings, Mixed buildings and open-sky. 

2.3 Machine Learning process for environment separation 

The Machine Learning paradigm allows the development of complex models to perform the classification task. 

Starting from a large set of data with labels, the algorithm is trained to recognize this data to perform afterward 

the inference of the label for new unknown observations. For the GNSS application introduced in this paper, we 

measure the ability of the trained algorithm to separate the multiple environments based only on the GNSS 

sensor measurements. The higher the scores reached, the better the separation of the data in their relying 

abstract space. 

Our exercise data consists in a two hours GNSS recording (sampling frequency of1 Hz), giving 7000 timestamps, 

based on a train commercial train journey between Fenouillet and Foix (South of France), as illustrated in fig. 3. 

From these points, a manual labelling has been performed, using external sources of information for 

classification of the environment. For the identification of areas with buildings, Google Earth has been employed. 

For the vegetation, the infrared satellite images are used (publicly available on the French national Geoportail 

website [10]). Many timestamps were attributed to mixed environment, where a clean human separation was 

not possible (for instance with two kind environments, building from one side and open-sky from the other one). 

Among the 7000 points, only 3000 could be attributed to clean environments (train station, forest, buildings or 

opens-sky). Due to stopping intervals of the train, the points belonging to the class train station are nearly 2000. 

The features computed from the observation, and given to the algorithm, were the statistics (mean, minimum, 

maximum, variances, skewness and kurtosis) of the signal characteristics for each constellation and each 

frequency band, alongside geometric information and number of visible satellites. 2000 are kept to train the 

algorithms, the remaining ones to assess their performances. 

 

Figure 3: Train path from the CLUG project 

 

As a first experimentation, a linear algorithm is employed, a multi-class logistic regression (MLR) [11] model. This 

algorithm is employed for its interpretability power, and the statistical interpretations induced by its learned 

parameters. In the case of GNSS data coming from the CLUG dataset, the (MLR) succeeded in identifying several 
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environments with ease but failed for several ones, see the confusion matrix in fig. 4 (left part). This 

phenomenon highlights the limitations of the linear assumption. Separation between several environments is 

not perfect, here between the open-sky and the forest (tree) environments. This could indicate that in railways 

application, the vegetation around the track does not disturb necessarily the propagation of the signal. This 

inspection should be theoretically performed at different periods of the year to sustain this hypothesis. 

The fully explore the possible performances accessible by a powerful machine learning technique, the XGBoost 

algorithm [12] has been tested. This model, from the family of Gradient Boosting algorithms, is able to learn a 

complex non linear separation rule, at the cost of less interpretable parameters and structure. Its empirical 

accuracy allows a fast estimation of the maximum performances bound, see the confusion matrix in fig. 4 (right 

part). The accuracy of this model is clearly superior to the previous one. This experiment shows the difficulty of 

the representation of environments. Various sources of information should be included to improve the 

separations: images from cameras, internet exchanges, or specific maps of the ground. 

 

Figure 4: Confusion matrix for Multi-class Logistic Regression (left) and XGBoost (right) 

 

The two aforementioned models are inspected after the training phase. Statistical indicators, the as the SHAP 

value, allows the identification of the most important variables for environment separation. Among them, we 

discover the calculation of the ionospheric bias (therefore non-linear transformation of the elevation), and the 

direct minimums of RINEX observation (the statistical transformations seem not to have a high weight in the 

classification of environments). The other features should however not directly be removed, since the 

interaction between features is complex to model, and their influence on the classification difficult to assess in 

the non-linear modelling.  

A general idea of the classification process is to learn the conditions of the environment. We do not want the 

algorithm to learn the spatial information (locations of the environments). The generalization property is indeed 

needed to perform classification in other areas. 

  

2.4 Error models 

The generation of a realistic local error (multipath and noise error) requires a proper knowledge of the true 

location of the train at each time step. This information is accessible in the CLUG dataset. From each 

pseudorange, the following are sequentially removed: the receiver and satellite clock offset (and relativistic 

correction), the instrumental, Ionospheric and Tropospheric delays. Each frequency band is process 

independently, and the Klobuchar ionospheric model used as a standard approximation of the Ionospheric delay. 

The remaining quantity is considered as the error to be later reproduced.  

The simulation we introduce is based on a stochastic model, which assume temporal independence between 
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errors. A Gaussian assumption of this error allows an easy parametrization of this stochastic model. The 

simulation therefore involves only the generation of independent samples from the Normal distribution. 

However, since we expect higher errors for low elevations satellites, instead of removing the related 

observation, this article uses a robust estimator for the parameters of the Gaussian distributions, the Minimum 

Covariance Determinant [13]. As example on the local errors calculated for the GPS satellites in the L1 frequency 

band is displayed in fig. 5. The robust estimator has a narrower variance than the classical estimators (empirical 

means and covariances).  

 

Figure 5: Local errors distributions for GPS satellites (L1) and fitted Gaussian laws 

 

In the future, these models will be calculated for each environment, based on the empirical train journeys. 

3.  Perspectives 
The work presented in this paper intends to continue the first concepts for GNSS-based solution evaluation in 

an ERTMS testbed initiated in the Gate4Rail project. The work is performed in a collaborative way with the CIM-

SNCF, M3Systems and Railenium in order to add specific GNSS local errors in rail to the ERTMS testbed 

maintained by the CIM.  

The concept is now in a proof-of-concept phase where the goal is to evaluate how realistic such a data-driven 

error model can be and if it can be used for performance demonstration and later safety evaluation. The different 

tasks in progress are: choice of the ML algorithm and its parameters in order to provide the best model; error 

generation along a railway run for simulation and evaluation; comparison analysis.   
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