

SYSTEM PILLAR CONSORTIUM – TASK 1 UIC AND UNIFE

Energy saving in Rail: Consumption assessment, efficiency improvement and saving strategies, overview report

Version 14 March 2024

Contents

CON	ITEN	TS	1
1.	EXE	CUTIVE SUMMARY	4
2.	INTE	RODUCTION	6
2	.1.	RAIL IS INHERENTLY ENERGY EFFICIENT	6
_	.1.	ELECTRIFICATION IN EUROPE	8
_	.3.	THE ENERGY CRISIS	10
2	.4.	SOURCES OF INFORMATION ERROR! BOOKMARK NOT DEFI	-
2	.5.	PURPOSE OF THIS REPORT	11
3.	ENE	RGY CONSUMPTION IN RAIL	14
3	.1.	THE RAIL SYSTEM'S CONSUMPTION	17
3	.2.	TRACTION ENERGY CONSUMPTION	23
4.	ASSI	ESSMENT OF ENERGY SAVING MEASURES	30
4	.1.	METHODOLOGY	30
4	.2.	Assessment and classification of rolling stock solutions	31
4	.3.	Assessment and classification of operation solutions	33
	.4.	Assessment and classification of infrastructure solutions	33
	.5.	ASSESSMENT AND CLASSIFICATION OF BUILDING SOLUTIONS	34
4	.6.	Assessment and classification of process solutions	35
5.	ENE	RGY SAVING MEASURES	36
5	.1.	ROLLING STOCK	42
	5.1.1	1. Master Silicon Carbide (SiC) semiconductors	44
	5.1.2	······································	45
	5.1.3		46
	5.1.4	5 5, ,	47
	5.1.5	, ,	48
	5.1.6		49
	5.1.7		50
	5.1.8	5 5 7 15	51 52
	5.1.9	, , , , , , , , , , , , , , , , , , , ,	52
	5.1.1 5.1.1	,	54 55
	5.1.1		
		rs, and train components)	56 July
	5.1.1		59
	5.1.1		59
5	.2.	Operations	63
	5.2.1	1. Using the most efficient trains for operations	64
	5.2.2		65
	5.2.3	3. Driving assistance tools, Driving Advisory Systems (DAS) and Automatic Trai	in
	Ope	eration (ERTMS/ATO)	67
	5.2.4	 Partial equipment usage: adaptation of equipment use according to load/ne 72 	eeds
	5.2.5		73

	5.2.0	6. Using energy measurement data	74
	5.2.2	7. Fine tuning train services	75
	5.2.8	8. Efficient heating, ventilation, and air conditioning (HVAC) management	76
	5.2.	9. Eco-stabling, eco-parking	78
	5.2.2	10. Interval operation of traction coolant pumps during stabling	81
	5.3.	INFRASTRUCTURE	82
	5.3.2	1. Railway layout and infrastructure performance	84
	5.3.2	2. Electrification: increased efficiency, renewable energy integration and smart	
	man	nagement	86
	5.3.3	3. Supply structure/neutral sections	88
	5.3.4	4. Infrastructure manager information for railway undertakings: increase the	
	opei	rator awareness regarding more efficient driving and consumption at standstill	89
	5.3.5	5. Smart control of power supply and on-demand supply	90
	5.3.0	Increased voltage for better transmission efficiency	91
	5.3.	5, 11, ,	94
	5.3.8		95
	5.3.9	5 5, 1	96
	5.3.2		97
	5.3.2		100
	5.3.		100
	5.3.1		102
	5.3.		103
	5.3.	5, 11,	104
	5.3.1	5, 5	105
	5.3.		107
	5.4.		L10
	5.4.		110
	5.4.2		111
	5.4.3		114
	5.4.4		
	5.4.		117
	5.4.0		118
	5.4.		120
	5.4.8	5, 5, , ,	120
	5.5.		122
	5.5.2		
			122
	5.5.2	2. Management activities – cleaning 1	123
6.	EUR	OPEAN RESEARCH AND INNOVATION PROJECT SOLUTIONS	L25
	6.1.	Shift2Rail 1	L25
	6.2.	EUROPE'S RAIL – RAIL4EARTH PROJECT 1	L29
	6.3.	ENERGY SAVING MEASURES IDENTIFIED VS EUROPEAN R&I ACTIVITIES	L31
7.	REG	ULATIONS: CONSTRAINTS AND CHALLENGES 1	L35
	Ροτεντ	IAL IMPACT ON THE EU TSI REGULATIONS	135
	7.1.		138
	7.2.		139
	7.3.		L40
8.	DISC		140
	2.54		

9. CONCLUSION	145
REFERENCE DOCUMENTS	146
APPENDIX 1 UIC ENERGY SAVING TASKFORCE PARTICIPANTS AND CONTRIBUTORS	148
APPENDIX 2 MÁV DATA	153
APPENDIX 3 DETAILED ANALYSIS OF INNOVATIVE SOLUTIONS AND TSI COMPATIBILITY	156
Appendix 3.1: Rolling Stock	156
Appendix 3.2: Operations	163
Appendix 3.3: Infrastructure	175
Appendix 3.4: Buildings	189

1. Executive Summary

Rail is an innovative industry, striving to find new and adaptive techniques to reduce energy use and improve efficiency. Rail companies are large consumers of energy and are often the single highest electricity user in their country.

Following recent steeply rising energy prices and problems with supply and energy security in 2022-23, the UIC Energy Saving Taskforce was launched for members as well as other rail industry partners to share solutions and strategies to mitigate the impact of these circumstances.

In order to know where savings in energy use can be achieved, it is important to understand where energy is consumed within the railway system (given in section *3 Energy consumption in rail*). A survey was conducted with European rail infrastructure managers and operators and then compared to published literature. The survey revealed that a large proportion of the energy used today in European railway operations is for traction energy (the movement of trains). A total of 86.7% of energy was reported to be used in freight and passenger traction power. The report includes a breakdown of where energy is used in traction, including where losses have been observed. After traction, infrastructure operations (for example, signalling and telecommunications) are the second largest consumer, at approximately 7.9% and the third and smallest energy consumer is from buildings (5.5%).

The report was commissioned by EU-Rai to ensure that the output would reflect the broader consideration including (beside UIC taskforce work) the outputs of S2R and EU-RAIL R&I. The report collects and assesses energy saving approaches in all relevant subsystems of the railway sector (following the methodology as set out in section *4 Assessment of energy saving measures*). This report contains a catalogue (section *5*

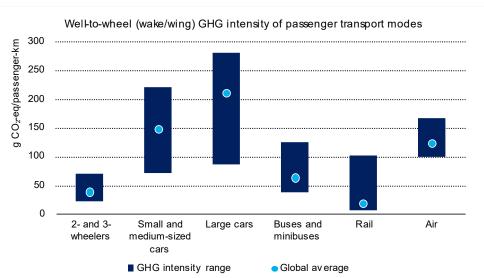
Energy saving measures) of solutions that have been trialled or used in the European rail sector, with a specific part for rail research programmes (section *6 European research and innovation project solutions*). The purpose of the report is to collaboratively share knowledge on energy saving with recommendations on how to support the accelerated deployment of these solutions (in *7 Regulations: Constraints and challenges* and *8 Discussion on the incentives and challenges for implementation*).

The catalogue includes a set of solutions, grouped by main focus in a template summary table. The tables give a description of the solutions with comments on the experience gained, and the benefits and constraints. The report organises this catalogue of solutions into the following subsections:

- Rolling stock solutions
 Any hardware improvements
- Operations
 Any solution to improve the energy efficiency of operations or avoid
 consumption
- **Infrastructure** solutions Any solution to save energy in railway asset management and improve efficiency
- Buildings (including stations)
 Energy saving solutions for stations and buildings
- **Processes** Any improvement to a railway management or operational process that could result in energy savings

A review of the implications for the European railway regulatory framework was also undertaken, highlighting the challenges for the European railway energy market and in implementing innovations as follows:

- Equipment lifespan
- Human Resources and factors
- Customer comfort
- The pay-back period, uncertainty, and change
- Energy production
- Decarbonisation and phasing out fossil fuels
- Information and metering
- Industry structure challenges


The report concludes by reporting on industry reported priorities and future research needs.

2. Introduction

2.1. Rail is inherently energy efficient

Due to the interaction between rail tracks and wheels having low friction, as well as trains having a high capacity for the mass transport of both passenger and freight, rail is inherently energy efficient. According to the IEA, on a "well-to-wheels" (wing/wake) basis, rail greenhouse gas (GHG) emissions per passenger-kilometre currently average around one-sixth of those of air travel (Figure 1). Furthermore, emissions from electrified passenger rail are even lower, particularly when powered by renewables or nuclear energy.

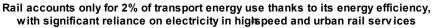


Figure 1: IEA, well-to-wheel (wake/wing) GHG intensity of motorised passenger emission factors in grams of CO₂ equivalent (greenhouse gas) - range according to transport mode¹

The railways are in fact so inherently energy efficient, that when the IEA published their "7 ways to save energy"², greater use of public transport was a key recommendation.

"For longer distances where walking or cycling is impractical, public transport still reduces energy use, congestion and air pollution. If you're going on a longer trip,

Energy saving in Rail overview report

¹ IEA, Paris https://www.iea.org/data-and-statistics/charts/well-to-wheel-wake-wing-ghgintensity-of-motorised-passenger-transport-modes-2, IEA. Licence: CC BY 4.0 ² https://www.iea.org/spotlights/7-ways-you-can-save-energy

consider leaving your car at home and taking the train. Buy a season ticket to save money over time. Your workplace or local government might also offer incentives for travel passes. Plan your trip in advance to save on tickets and find the best route."

One crucial way for the railways to save energy, is to attract more traffic away from aviation and road transport, especially private cars and trucks. In fact, by engendering a modal shift, the railways must increase their energy consumption by transporting more people and goods, in order to save energy for the transport sector in a general sense.

UIC holds data on the energy use from railway operators in Europe, as part of the Environment Strategy Reporting System (ESRS), which, in 2022, was renamed as the Traction Energy & Emissions Database.

The 2023 data collection campaign (reporting 2022 data) shows that the effects of the pandemic (SRAS-COV2, COVID-19), are still being felt in terms of energy consumption, due to reduced demand and occupancy, although it is now much closer to pre-pandemic levels. This is illustrated in Figure 2, with the total energy consumption of the reporting railways being shown.

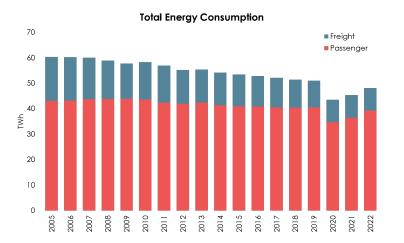


Figure 2: Total tractive energy consumption (for both passenger and freight services, electric and diesel traction), in terawatt-hours. UIC Traction energy & emissions database, 2023

Details of the increased efficiency by service, and the specific trends in the reduction in energy consumption in kilowatt-hour per passenger-kilometre and tonne-kilometre are given in Figure 3.

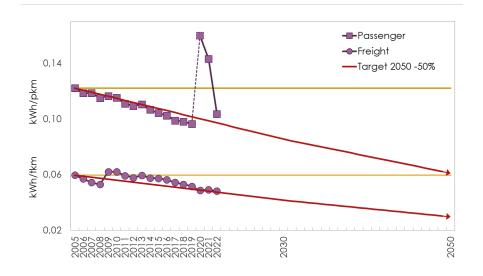


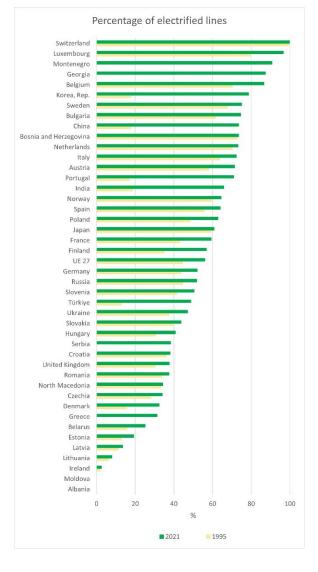
Figure 3: Energy efficiency of passenger trains in kilowatt-hours per passenger-km, and of freight trains in kilowatt-hours per tonne-km (for both electric and diesel traction), UIC Traction energy & emissions database, 2023

Overall, total energy consumption has decreased between 2005 and 2022 (Figure 2), which can be explained by various cumulative factors, such as less diesel freight trains being in operation, less freight trains running in general, or simply the reporting companies carrying out less freight activity, besides the obvious impacts of COVID-19. It is clear that, from an efficiency perspective, trains running with fewer passengers will have a much higher energy consumption per passenger kilometre. Fortunately, as COVID-19 becomes less of a concern, the usual efficiency levels are recovered as passenger flows return closer to normal levels. As visible in Figure 3, this effect does not apply to freight trains, as the load factors remained stable throughout the crisis (regardless of the number of trains).

It was also expected that the energy crisis, that started following the early stages of the 2022 war in Ukraine, has an effect on this trend, as well as on the energy efficiency of operations. As assumed, energy saving strategies undertaken in 2022 have already had a visible effect on efficiency, alongside the market recovering from the effects of COVID-19.

2.2. Electrification in Europe

Some European railways count among the most electrified in the world (e.g., Switzerland). Of the EU 27 countries, 56% of the lines are electrified, with these including the lines with the highest traffic volumes, therefore accounting for a large proportion of passenger and tonne-kilometres travelled by rail in Europe.


According to UIC's Traction energy & emissions 2022 data, 88% of passenger train kilometres were ran on electricity for reporting (main) European operators. The ratio

is at 90% for freight reported train kilometres (note that the number of operators reporting is not representing the whole freight market).

Figure 4 ranks the level of electrification by country, as well as the increases in electrification implemented between 1995 and 2021, showing that countries such as Denmark, Portugal and Turkey have rapidly rolled out electric overhead contact lines.

As a result of this high level of electrification, the railways have some of the lowest greenhouse gas (GHG, and other pollutants such as nitrous oxide (NOx) and particulate matter (PM) or dust) emissions of any mode of transport. This also partially explains the high efficiency of railways per passenger-kilometre, although, at the same time, means that large rail operators are often one of the largest end users of electricity in their country.

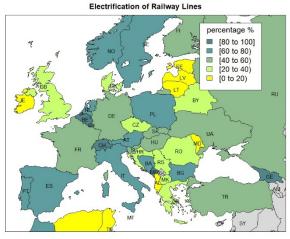


Figure 4: Reported European electrified lines – Eurostat and UIC RAILISA (RAIL Information System and Analyses, UIC Statistics Database)

2.3. The energy crisis

In the context of climate change, soaring energy prices, increasing energy supply insecurity (as illustrated in Figure 5 and Figure 6), and the fact that railways are often significant consumers of both electricity (Figure 6) and diesel, with their demand also matching peak energy demand times, railways have both the urgent need and responsibility to find practical ways to reduce their energy consumption.

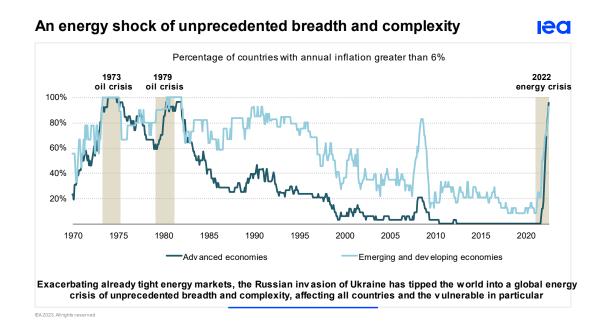
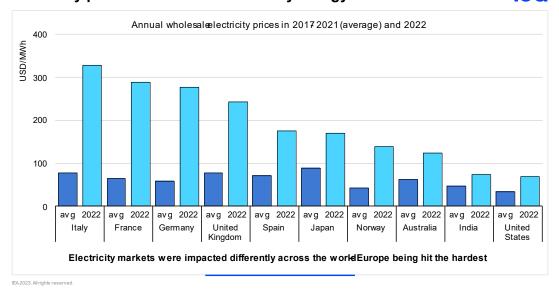



Figure 5: Inflation in emerged and emerging countries (IEA – World Energy Outlook, 2022)

Electricity prices remain elevated led by energy commodities' cost

Figure 6: Average annual wholesale electricity prices (2017-2021) compared to 2022 (IEA – Electricity market report, 2023)

In 2022, in response to this price shock, the European Commission and the International Energy Agency asked businesses to involve their employees in finding ways to improve energy efficiency, facilitating the networking of multiple companies to simultaneously develop their energy audits or energy management systems, sharing best practices, and running joint training sessions.

It is interesting to note that for some countries, contextual aspects had an increased effect on the electricity prices (therefore railways), as for example the unusually low nuclear production in France.

2.4. Purpose of this report

Rail is a highly innovative industry and is already finding new and adaptive techniques to reduce energy use. This report brings together a broad range of solutions for energy saving that have been trialled or used in the European rail sector.

The purpose of this report is to collaboratively share knowledge with recommendations on how to support the accelerated deployment of these solutions.

This report sets out the following key practical information to support rail organisations in saving energy:

- The main energy consumers in the railway system (*3 Energy consumption in rail*)
- An assessment and classification of sets of solutions, according to their benefits over costs (difficulty, cost, time) (4 Assessment of energy saving measures)

- A catalogue of selected solutions with the potential to save energy, from the experiences of the European railway industry, infrastructure managers, undertakings (*5 Energy saving* measures), and rail research programmes, including Shift2Rail and Europe's Rail Joint Undertaking (ERJU) (*6 European research and innovation project solutions*)
- A review of any implications on the European railway regulatory framework (*7 Regulations: Constraints and challenges*)
- Recommendations for ways to achieve widespread and fast deployment (8 Discussion on the incentives and challenges for implementation)

As part of Europe's Rail Joint Undertaking – LOT 2 System Pillar, the production of this report has been commissioned by the European Commission EU-Rail JU to:

- support the railway sector by compiling energy saving approaches for railways,
- provide EU decision makers with a clear overview of existing or upcoming solutions to remove, where needed, any possible legal barriers for their adoption.

The objective of the report is to compile and assess energy saving approaches in all relevant subsystems of the railway sector, including rolling stock, operations, infrastructure and buildings. It includes short-term approaches, which can be achieved without extensive investment, as well as long-term approaches.

The work also takes relevant research activities in the railway sector, the practical experiences of stakeholders (best practices) and the work carried out within Shift2Rail and EU-Rail innovation on energy saving approaches into account.

This report draws information from several sources and organisations, making a compilation of solutions for energy saving. Solutions presented are being developed, trailed, and tested within the European rail sector and have been shared with the report authors for the benefit of the whole sector. Sources include:

- Solutions for energy saving developed under the Shift2Rail programme
- The UIC special taskforce for energy saving, set up in October 2022 in response to the energy crisis, the group including Operators, Infrastructure managers, manufacturers and academia, met online to share their knowledge and experiences on energy saving solutions
- Energy projects developed in the UIC Rail System Forum and Sustainability
 Platform

The report features solutions finding their origin in many different company/institution specific projects, with different boundaries and assessment methods. Therefore, and since the aim is to give an overview, it was not possible to normalise the quantitative results to a common methodology, in order to allow for full comparability of the obtained energy saving values given the railway system specificities by country/IM or operator/vehicle types. Qualitative or quantitative information in the report should serve as hint to the reader/user and the reader is invited to carefully consider the differences for each assessment/boundaries before trying comparing results from different projects. For the same reasons, it was not possible to align all solutions introduced to their respective technology/market readiness level.

12

The report did not focus on techniques to reduce greenhouse gas emissions, since the emphasis was on energy supply. Nevertheless, any energy saving will also reduce emissions, provided that the energy comes entirely or partially from fossil fuels.

3. Energy consumption in rail

This section provides a summarised overview of the main energy consumers in the railway system, with the aim of identifying how energy is used in the railways and the areas where the energy demand is the greatest.

Energy use within the rail system is classified into two categories: traction and non-traction.

Traction energy consumption includes the energy used to move the train and its auxiliary systems, therefore covering the power required to operate rolling stock.

The term "non-traction" includes the energy consumed in buildings (including in offices and stations, such as lighting, cooling/heating, IT systems, escalators, and lifts), depots including maintenance and cleaning equipment, and in other infrastructure operating systems such as signalling, trackside lighting, points heating, and telecommunications.

The consumption can be broken down into the following areas or type of activity (UIC-FFE Technologies and potential developments for energy efficiency and CO_2 reductions in rail systems, 2017):

- <u>Traction energy</u>
 - Movement of trains
 - Auxiliary systems of the trains

Technical auxiliary systems in vehicles are necessary for the vehicles to operate correctly (fan engines, compressors, etc.), and commercial auxiliary systems are necessary for passenger comfort or to conserve goods (heating systems, cooling systems, lighting, etc.)

<u>Non-traction</u>

Auxiliary systems of the infrastructure

These include, for example, energy consumption for lighting in tunnels or track sections, point heating systems, signalling and communication systems, etc.

Stations, workshops, and other uses

This is the energy consumption for the lighting and air conditioning of stations, terminals, freight marshalling yard, parking lots, workshops (incl. maintenance), tracks maintenance and offices

Academic research shows that traction energy accounts for the largest share of energy used in the railway system, usually at between 60% to 80%³⁴⁵⁶. On the other hand, non-traction energy use is less covered in published research, and therefore in order to confirm assumptions and understand energy use in greater detail, a survey was conducted within the UIC Energy Saving Taskforce.

It is important to note that there is a very high customer sensitivity to train service offers, so that reducing energy consumption is not as simple as it looks, which in turn could also have an increased impact on profitability (e.g., if savings make timetabling/comfort less attractive). Railways have to find the optimal balance between energy restraint and their appeal to passengers and shippers. Faster or more frequent operations, and increased comfort, always mean higher energy consumption. Fine tuning all of these aspects is always a challenge, given the scale that most European railways operate on.

Aside from this, railways contribute to a reduction in the transport sector's societal impacts (or external costs), and therefore, to what extent costs to society to be borne by mode are balanced out, will play an important role for the railways' profitability.

Unfortunately, railways do consume high amounts of energy, but this is related to their nature as a mass (centralised) mode of transport, for which the ratios of energy consumption by transport service, and societal impacts by transport service, are much lower than other modes.

Another important thing to note is that reducing rail energy demand and emissions is a long sought-after goal. This report's featured solutions have often already been studied on either a small or large scale, and over the long term, as illustrated by the survey results (Table 1) of the *UIC-IZT-Macroplan Non-traction energy consumption*

³ Ding Y, "Study on Train Movement Calculation and Operation Optimization Simulation System," PhD thesis of Beijing Jiao tong University, 2005.

⁴ Gu Q, Tang T, Song Y-D. A survey on energy-saving operation of railway transportation systems. Meas Control 2010;43:209–11.

⁵ RSSB. T913: strategy research programme: whole life carbon footprint of the rail industry. London: RSSB: 2010.

⁶ González-Gil A, Palacin R, Batty P, Powell JP. A systems approach to reduce urban rail energy consumption. Energy Conversion and Management 2014, 80, 509-524.

study from June 2012 (although these should not be confused with the survey carried out as part of the 2023 energy saving activities).

Table 1: List of non-traction energy efficiency solutions, and to what extent it wasexplored by 22 participants of the survey for the UIC Non-Traction Study 2012

Frankrik officiar exactivity	implementation level				
Energy efficiency activity	implemented	pilot projects	investigations	not a topic	Total answers
New lighting systems for station buildings		12	6	4	22
New lighting systems for platforms	1	10	5	6	22
Optimized heating systems	3	8	6	5	22
Optimized air conditioning and cooling	1	6	7	8	22
Energy efficient equipment (e.g. escalators)	5	5	6	6	22
Energetic overhaul of buildings	5	6	5	6	22

For example, the list in Table 1 shows that at least 5 out of 22 participants were looking into and/or actually optimising lighting, heating/cooling, or insulation.

The energy crisis has only served to make railways think about accelerating the implementation of these solutions, whenever possible and applicable, on a larger scale or on a case-by-case basis. Therefore, sorting each solution by its cost/benefits ratio following a top-down approach was challenging given the fact that each company is at a different implementation stage for a specific solution.

Energy Consumption Survey

Methodology

Primary data on consumption was collected via a survey sent to the UIC Energy Saving Taskforce on energy use in the railway system. This took place between June and July 2023 using a template spreadsheet (with the format being collaboratively agreed upon in advance to be suitable for all participants, as illustrated in Figure 7, Figure 14 and Figure 15). As the taskforce members represent freight and/or passenger operators and/or infrastructure and stations managers, the range of activities the members are involved in is reflected in the data coverage. Some members have 'holistic' data providing information on all railway energy use, while others only have data on the energy used by trains (traction and the onboard auxiliary systems). Different data collection and sub-metering practices are in use, and therefore the level of detail available varies widely between companies. Information on both electricity (AC and DC) and diesel energy was requested, with diesel being converted into Gigawatt hours equivalent for comparison. The participants were requested to input a value in Gigawatt hours and/or a share, in percent, representing the energy consumption of each item and sub-item.

• Participation

Survey participants: 13, 2 of whom are not listed below for confidentiality reasons.

Company	Country	Туре
Bane NOR	Norway	IM
СР	Portugal	RU
Infrabel	Belgium	IM
MÁV	Hungary	Integrated
NMBS/SNCB	Belgium	RU
Network Rail	UK	IM
ProRail	Netherlands	IM
SBB	Switzerland	Integrated
Trafikverket	Sweden	IM
ZSSK	Slovakia	RU
ZSSK Cargo	Slovakia	RU

Table 2: List of companies that provided an input to the survey

The holistic data received mostly regarded the first two levels (lowest detail, from left to right), given in Figure 7. Thus, the most representative consumption profile was built illustrating the percentage split for the categories:

- Infrastructure
- Real estate
- Passenger services
- Freight services

Not all companies were able to share details of traction energy consumption, and therefore it was useful to build an energy-use profile for companies that did include traction energy values, as well as a profile of companies who did not. Additionally, given the different operating scales of the railways that participated in the survey, absolute energy consumption values were not considered, with percentages being used to analyse and illustrate the breakdown.

3.1. The rail system's consumption

To consider as many aspects of energy consumption for railways as possible, a consumption mind map was created as top-down holistic approach (considering that the entire railway system includes traction and non-traction energy consumption).

Figure 7 illustrates the four consumption categories as given above:

- Infrastructure management covering the majority of track and platform access management, their maintenance, and the power supply for all the associated equipment
- Real estate which considers all aspects of building management, including technical buildings and offices
- Passenger and freight transport covering the consumption for the operation of the services themselves

	Distribution losses
	Fuel-powered traction power
Passenger transport	Fuel provision for traction
	Maintenance workshops
	Service facilities
	Ticket machines
	Electric traction power
	Distribution losses
Freight	Fuel-powered traction energy
	Fuel provision for traction
	Maintenance workshops

Figure 7: Railway system consumption map

The consumption mind map, and Figure 14 and Figure 15 for traction, were used as the input fields for the UIC member survey.

For infrastructure managers, according to the UIC-IZT-Macroplan Non-traction energy consumption study, June 2012, two major sources are signalling/telecoms and switch heating, each counting for approximately 20% of overall energy consumption. Energy consumption in stations is around 30% (lighting, equipment, passenger information) while another 20% is energy for other infrastructure (lighting and other buildings). The final 10% is for offices/administrative buildings. This split was inspired by the ProRail breakdown from UIC-IZT, 2012.

For countries that have a colder climate, switch/turnout heating can represent a challenge in terms of consumption. In 2013, switch heating accounted for 50% of non-traction energy use.

Survey output - rail system consumption

The tables below show the repartition of energy consumption by category, by percent share. Table 3 introduces the proportions as an average for the companies capable of reporting both traction and non-traction consumption. Table 3 shows that the energy consumption for passenger services is by far the highest, and while traction for freight is much less substantial, it is still much higher than the other categories.

Table 4 introduces the averaged percentages for the companies that reported nontraction consumption alone, as well as the companies that reported both, however, with the traction energy use discounted. Table 4's consumption profile still includes transmission energy losses, so to keep considering the existence of rail infrastructure ready to supply traction energy, and to better understand the consumption profile from an infrastructure manager's point of view.

	Consumption profile with Traction
Infrastructure	7.9%
Real estate	5.5%
Traction – passenger	71.9%
Traction – freight	14.8%

 Table 3: Energy consumption profile including all aspects of traction energy

Table 4: Energy consumption profile only considering non-traction energy

	Consumption traction	profile	without
Infrastructure			40.3%
Real estate			25.1%
Traction - passenger			28.3%
Traction - freight			6.3%

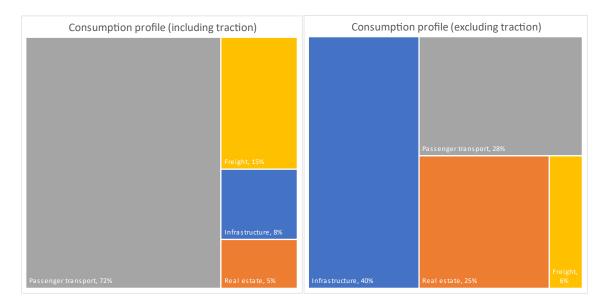


Figure 8: Consumption profiles by main category based on UIC Members responses to the survey. Left square (100%) includes energy consumption for traction. Right square (100%) excludes traction.

When looking at Table 3 and Table 4, both confirm that traction uses the most energy in absolute values, and is therefore the most impactful category for railway activity. The second largest energy user, after traction energy, is infrastructure, which includes maintenance depot operations, signalling and communications (Table 4). Real estate including stations and offices are the third and lowest energy consumer. Nevertheless, as put into perspective with Figure 8, without traction, they still represent opportunities to save energy.

Therefore, the energy consumption survey has confirmed the assumption that traction energy accounts for the largest proportion of energy use in the railway system. Adding freight and passenger traction together, traction energy accounts for more than 86% of the energy used by survey participants (See Table 3).

An example of the repartition in energy consumption can be seen within the SNCF group (independently built by SNCF beside the survey for this report).

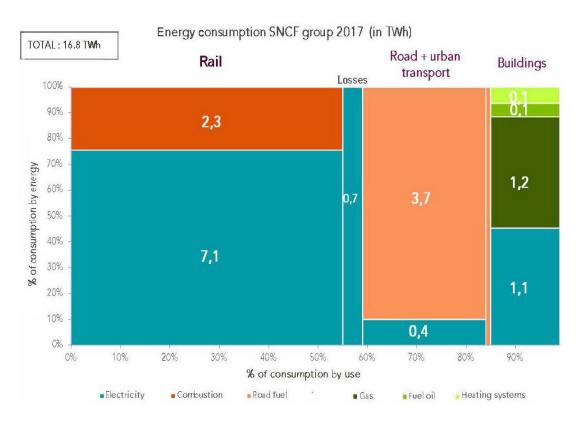


Figure 9: Energy consumption for the SNCF group in 2017 (in TWh) Source: SNCF

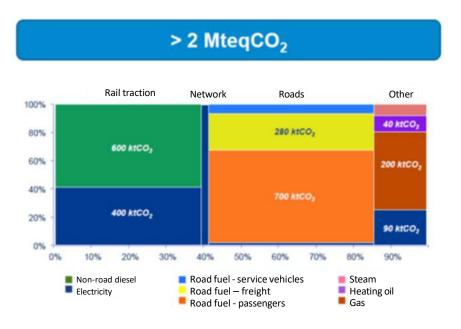


Figure 10: CO₂ emissions due to SNCF energy consumption

To further illustrate the repartition of energy consumption when considering infrastructure management, a breakdown of data (survey input) from MÁV, the

Hungarian State Railways, is given as an example. The main areas of consumption were identified as:

- Public accessibility 51.24%
- Train control systems 25.30%
- Telecommunications 11.50%
- Tracks & technical centres 12.00%

Figure 11 illustrates the split for the consumption categories for infrastructure listed above.

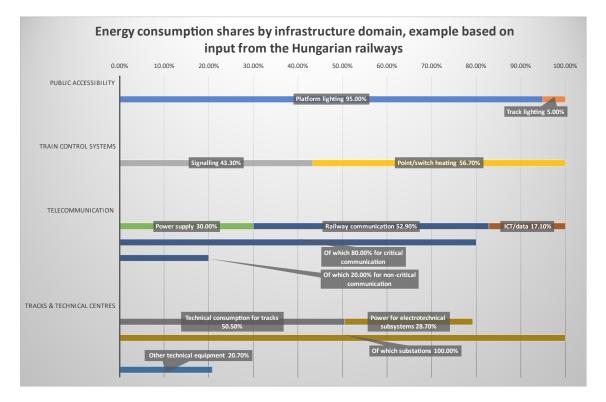


Figure 11: Energy consumption by consumption category in infrastructure management based on the Hungarian State Railways' (MÁV) input

These examples give an overview of what the split for an integrated railway company or infrastructure manager may be. Certain consumption categories can be worth focusing on for improvement in a specific situation. For example, according to M.M Pigeaud/ProRail, 2022, station lighting accounted for 30% of ProRail's total energy consumption, necessitating the launch of the "Lighting Programme", a large-scale project to refurbish and future-proof lighting and contribute to sustainability by reducing the energy consumption of station lighting by 50% (15% of Prorail's total energy consumption). Another 50% was saved by dimming the lighting in the absence of passengers (*see 5.4.6 Smart and efficient LED* lighting).

3.2. Traction energy consumption

Figure 12 shows a typical energy flow sent from the power grid to the train's traction system for conversion into kinetic (*mechanical*) energy. As a train can recover energy from electrodynamic braking, energy is converted back into electrical energy through the train's traction system, which then can feed the auxiliary systems (reducing auxiliary energy needs), or is sent back through the transmission system. This energy then either feeds another train's traction energy demands or flows through the substation for b a net recovery.

Energy losses are present throughout the traction system including during transmission, in the substation, catenary and through aerodynamic and rolling resistance (red arrows in Figure 12). Traction losses are due to inefficiency in converters, motors, the transmission system and in braking. However, as mentioned above, energy can be recuperated through regenerative braking where the rolling stock and infrastructure has the capability, although there are also losses when this energy is converted.

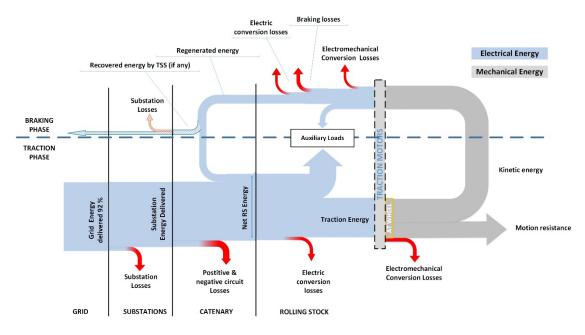


Figure 12: Energy flows within the AC traction energy supply system for train operation (UNIFE, EU-Rail Energy saving WG)

With regard to the energy spent to create mechanical energy, as pointed out in UIC-FFE 2017 and Figure 13, it is useful to emphasise that train mass has a substantial impact on energy consumption for all service types and especially for heavier and frequently stopping trains.

	ΔCons/ΔMass	$\Delta Cons/\Delta Coef. C$
High speed long distance	0.21	0.43
Conventional long distance	0.48	0.17
High speed mid distance	0.47	0.20
Conventional mid distance	0.61	0.05
Suburban train	0.48	0.03
Metro	0.76	0.01

Figure 13: Influence on consumption (delta Cons) of variations in train mass (delta Mass), or variations in the drag coefficient (delta Coef.C) (UIC-FFE, 2017)

The rolling stock's aerodynamic efficiency, illustrated with the drag coefficient for each train will also have an impact on consumption, especially relative to the operating speed and tunnels, and, as consumption is cumulated over time, it is always important to consider both (meaning any aerodynamic or mass improvement will have cumulative savings over time).

As for the entire railway system, a consumption map has been created to focus on the traction energy consumption chain of passenger and freight services (as introduced at the bottom of Figure 7).

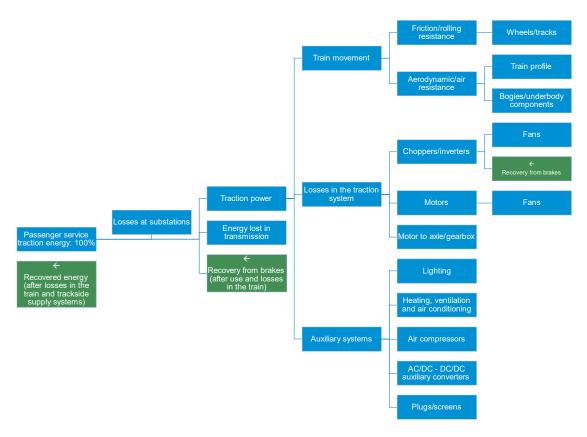


Figure 14: Passenger train energy consumption map

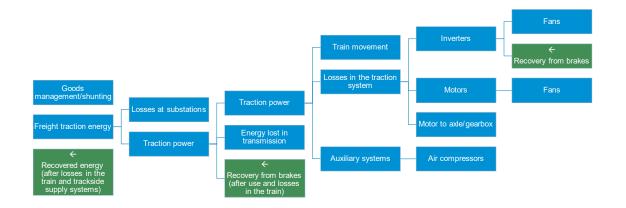


Figure 15: Freight train energy consumption map

Survey results - traction energy consumption

Based on the detailed data received from MÁV, it was possible to create a consumption breakdown throughout the traction chain, following the statistics for their commuter or regional trains, and electric (AC, DC), and diesel freight trains (Figure 16). This showed that energy losses are lower for DC traction systems than for AC systems (3% vs 12.7%). It certainly translates the consumption of transformers for the use of the alternative current. On the other hand, auxiliary systems are more energy-intensive on the same DC trains (17%) compared to AC trains (9.3%) although is compensated for by significantly more energy being recovered from DC trains. Overall, DC train energy use is much lower (1.5GWh) than for AC trains (611.5 GWh), meaning that this does not represent a definitive trend.

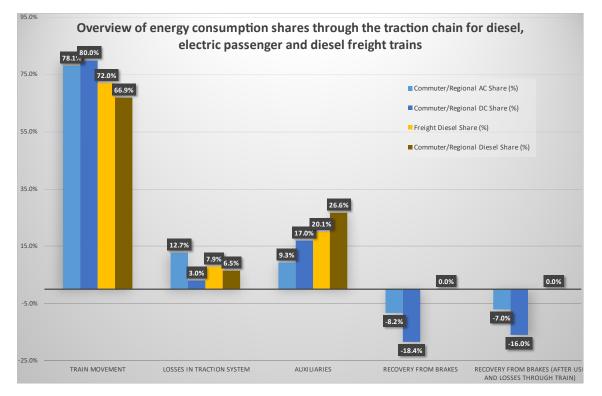
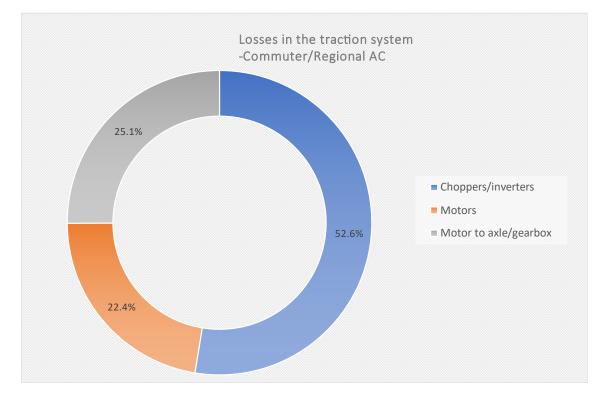



Figure 16: Shares of energy consumption by type of use in the traction chain for electric AC, DC and diesel commuter trains and diesel freight trains at MÁV

Since the amount of energy spent is higher for electric AC trains, with losses in the traction system also being higher, the apportionment for the latter was further looked into (Figure 17). Fans on choppers/inverters were reported to divert 22.9% of the energy sent to choppers/inverters. Fans on motors were reported to divert 19.5% of the energy sent. It shows that fans can indeed represent a substantial part of the

energy consumption through the traction system (of the 12.7% lost through traction, 52.6% are going into choppers/inverters, of which 22.9% a spent by fans).

Figure 17: Energy losses in the traction system (over the 12.7% total of the energy input)

To illustrate the energy consumption for auxiliary systems, the most interesting profiles were collated in Figure 18, showing the distribution of energy into the auxiliary systems of AC commuter trains and diesel commuter trains. This facilitates a deeper understanding of which components use the most energy.

Aside from the fact that the amount of energy sent to auxiliary systems is much higher for the diesel train with 26.6% of the traction energy (important to keep in mind while reading Figure 18, versus 9.3% for AC trains), it shows that heating, ventilation and air conditioning also account for a substantial share of the total, with the greatest difference being between auxiliary converters (7.1% for AC, 23.7% for diesel). It is also interesting to note that air compressors have a slightly higher percentage for AC trains than for diesel trains, although this can be explained by the fact that other components might be used differently between diesel and electric traction.

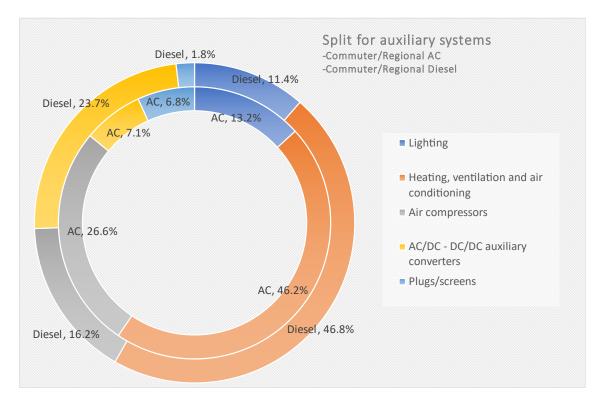
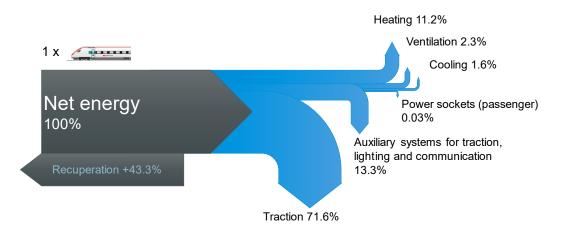
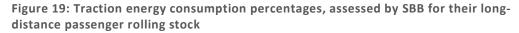




Figure 18: Energy split auxiliary equipment in commuter/regional AC trains (9.3% of the total energy input) and commuter/regional diesel trains (26.6% of the total energy input)

Figure 19, shows a different perspective, from SBB, the Swiss Federal Railways, on how energy is spent in their long-distance trains and related components.

The consumption shown in Figure 19 can be considered comparable to the previous figures and graphs even with the slight differences in the breakdown of the traction component data, though the expenses for comfort appear to be higher than for Hungarian AC trains: 15.13% in total (11.2% + 2.3% + 1.6% + 0.03%). But this is expected given the type of service offered by "long-distance" trains.

4. Assessment of energy saving measures

This section aims to highlight the most recommended and prescribed solutions among the participants, for quicker and more cost-efficient implementation. The assessment was carried by having the group sharing knowledge and experiences of the different energy saving solutions that were tested (see point *2.4 Sources of information*

4.1. Methodology

Each of the solutions contained within chapter 4 have been reviewed and assessed in terms of their impact and necessary investment.

The assessments are work of qualitative expert judgment and no system approach was made in the document. The solutions are single and non-comparable examples and evaluated by expert qualitative judgment. Experts involved in EU-Rail or S2R projects also contributed to the set. Multiple solutions related to a same field can be retrieved in a same table, including S2R solutions related to energy saving.

The assessments were carried out by comparing and judging the solutions relative to each other, across five categories:

- Rolling stock solutions
 Any hardware improvements
- Operations solutions Any solution to improve the energy efficiency of operations or avoid consumption
- **Infrastructure** solutions Any solution to save energy in railway asset management and improve efficiency
- Buildings (including stations) solutions
 Energy saving solutions for stations and buildings
- **Processes** solutions Any improvement to a railway management or operational process that could result in energy savings

The assessments are plotted against two axis, "ease of implementation" (costs, timeframe, and effort) and "energy saving potential" (Benefits). The solutions were placed on these two axes by collective consensus during a series of online UIC Energy Saving Taskforce meetings, through a discussion and judgment of the solution using collective experience. The estimated benefits are relative to the usual equipment/use/area of rail operation. The registered participants and contributors of the taskforce are listed in Appendix 1.

The assessment was validated against literature on the highest users of energy in the railway system. The authors of this report also professionally reviewed the document for quality management purposes.

4.2. Assessment and classification of rolling stock solutions

From an operator's point of view, procuring new rolling stock is the simplest way to make sure that their operations will benefit from the most modern efficiency levels for all electrotechnical, aerodynamic and rolling resistance aspects as well as for auxiliary system efficiency and their smart management. Of course, this means that the supplier will have had to embed state-of-the-art innovation for the systems' efficiency into the rolling stock. Nevertheless, it is important to upgrade the equipment, according to the compatibility of the rolling stock (however, to the extent that the saving is worth the cost for the upgrade). Therefore, the catalogue in section *5*

Energy saving measures will only focus on the specific potential upgrades that could be applied to existing rolling stock or included in recently developed rolling stock.

Enabling and improving regenerative braking is considered a sound strategy for immediate energy saving, however, when rolling stock is not equipped with regeneration-capable brakes, the change is expensive, as shown in Figure 20.

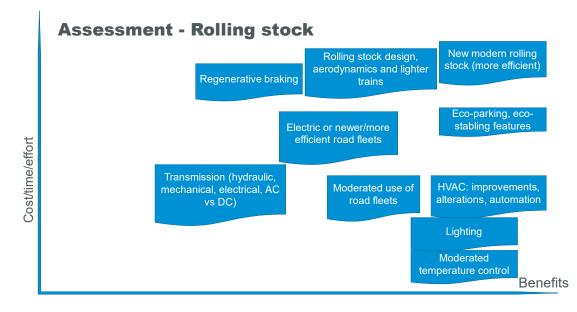


Figure 20: Main potential energy saving solutions for railway rolling stock sorted by cost/benefit ratio assessment

4.3. Assessment and classification of operation solutions

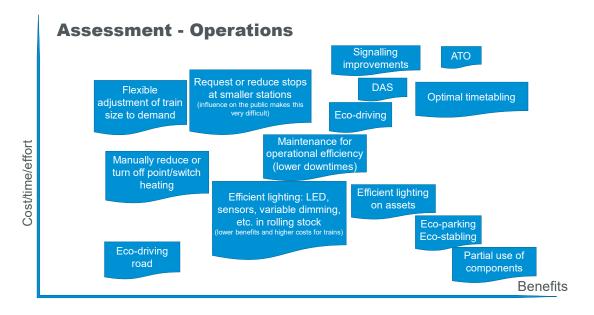


Figure 21: Main potential energy saving solutions for railway operations sorted by cost/benefit ratio assessment

4.4. Assessment and classification of infrastructure solutions

The benefits of renewable energy production are not always clear as purchased energy can also be green, therefore this can merely be seen as changing the source of energy, however:

- Renewable energy production replaces energy purchasing (of potentially more expensive electricity)
- Green energy supply no emissions related to power generation
- Benefits to being independent from the public grid
- Proximity means less transmission losses

33

Assessment - Infrastructure

Figure 22: Main potential energy saving solutions for railway infrastructure management sorted by cost/benefit ratio assessment

4.5. Assessment and classification of building solutions

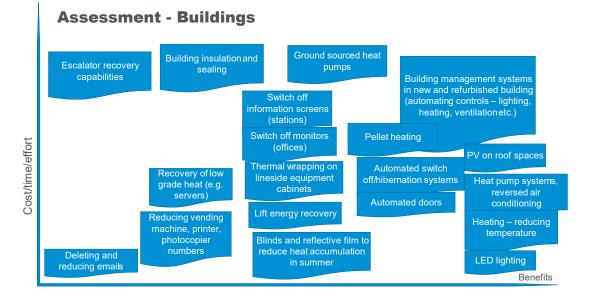
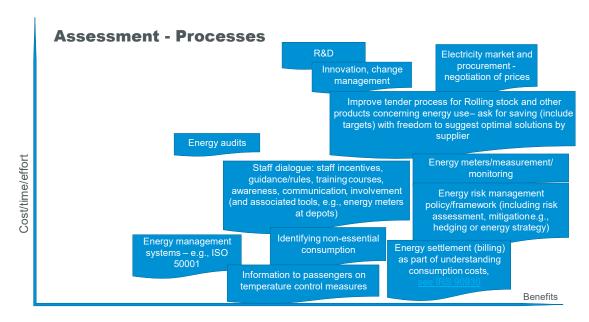



Figure 23: Main potential energy saving solutions for railway building and station management sorted by cost/benefit ratio assessment

4.6. Assessment and classification of process solutions

Figure 24: Main potential energy saving solutions for railway management processes sorted by cost/benefit ratio assessment

35

5. Energy saving measures

One of the UIC Energy Saving Taskforce's goals was for UIC members to share and highlight the measures that were implemented immediately in reaction to the energy price surges. On a larger scope, medium- or longer-term solutions that were important to accelerate or consider in the close future were also listed.

The first output of this activity is therefore a catalogue of new or known solutions, listing simple and complex solutions that UIC members have implemented and could implement to further save energy. As for the initial assessment, the set of solutions was broken down as follows:

- Rolling stock solutions
 Any hardware improvement
- Operations
 Any solution to improve the energy efficiency of operations or avoid
 consumption
- **Infrastructure** solutions Any solution to save energy in railway asset management and improve efficiency
- **Buildings** (including stations) Energy saving solutions for stations and common buildings
- **Processes** Any improvement to a railway management or operational process that could result in energy savings

For increased clarity, the solutions will be marked according to the following criteria (adding to the assessment made during Taskforce meetings):

• Innovation (to what extent the solution is pioneering)

	Innovation
Low	Technique has been known for many years and is widespread
Medium	Technique is known, recent and/or moderately used
High	Innovative technique, recently developed

 Ease/rapidity/affordability (considering the costs, time, effort to be spent on the solution)

	Ease/rapidity/affordability
Low	Expensive, long and/or complicated to implement
Medium	Moderate investment, moderate time and/or efforts required
High	Easy to implement, lowlight investment, time and/or efforts

• Benefits (level of reported benefits from trialling/implementing the solution)

	Benefits
Low	Very moderate and/or small-scale energy saving
Medium	Moderate savings and/or with a good systemic effect
High	Substantial savings and/or wide-spread benefits

This scale will be shown as follows:

Levels	Low	Medium	High

UIC Energy Saving Workshop

Alongside the recurring online sessions, it was also suggested that a conference and workshop be held to address the issues by specific category.

On 1 March 2023, a workshop was created to host 3 sessions, merging 6 important topics as addressed in this report:

- 1. Rolling stock and operations (abbreviated to RS/OPE)
- 2. Infrastructure and stations (and buildings) (abbreviated to Infra/Stations)
- 3. Energy procurement, contracts, and partnerships (abbreviated to Energy markets)

The workshop and sessions welcomed one or a few experts from the following companies, each session welcoming between 8-12 experts of these:

AIIB - Asian Infrastructure Investment Bank
ALSTOM
Amtrak
Bane NOR
BLS AG
CAF
CER
CFL
CFL cargo SA
CFL Multimodal
Connected Places Catapult
CRRC ZIC
East Japan Railway Company Paris Office
Eurostar - Thalys
Fundación de los ferrocarriles españoles (FFE)
Infrabel
Jernhusen AB
Junta de Seguridad en el Transporte (JST)

Knorr-Bremse KORAIL Lineas MTA Metro-North Railroad Network Rail NMBS NS ÖBB-Holding AG ÖBB-Holding AG ÖBB-Infrastruktur AG PKP Energetyka ProRail Rail Business Rail Cargo Austria AG SBB AG Siemens Mobility GmbH
Lineas MTA Metro-North Railroad Network Rail NMBS NS ÖBB-Holding AG ÖBB-Infrastruktur AG PKP Energetyka ProRail Rail Business Rail Cargo Austria AG SBB AG
MTA Metro-North Railroad Network Rail NMBS NS ÖBB-Holding AG ÖBB-Infrastruktur AG PKP Energetyka ProRail Rail Business Rail Cargo Austria AG SBB AG
Network Rail NMBS NS ÖBB-Holding AG ÖBB-Infrastruktur AG PKP Energetyka ProRail Rail Business Rail Cargo Austria AG SBB AG
NMBS NS ÖBB-Holding AG ÖBB-Infrastruktur AG PKP Energetyka ProRail Rail Business Rail Cargo Austria AG SBB AG
NS ÖBB-Holding AG ÖBB-Infrastruktur AG PKP Energetyka ProRail Rail Business Rail Cargo Austria AG SBB AG
ÖBB-Holding AGÖBB-Infrastruktur AGPKP EnergetykaProRailRail BusinessRail Cargo Austria AGSBB AG
ÖBB-Infrastruktur AGPKP EnergetykaProRailRail BusinessRail Cargo Austria AGSBB AG
PKP Energetyka ProRail Rail Business Rail Cargo Austria AG SBB AG
ProRail Rail Business Rail Cargo Austria AG SBB AG
Rail Business Rail Cargo Austria AG SBB AG
Rail Cargo Austria AG SBB AG
SBB AG
Siemens Mobility GmbH
Slovenske železnice, d. o. o.
SNCB NMBS
SNCF
SNCF RESEAU
SNCF Voyageurs
Strukton
SYSTRA
Thalys
marys

Each session was chaired by a duo of experts.

Overviews of the solutions mentioned by the Taskforce Members were created for each category and occasionally adjusted. An overview of the outcomes, discussions, and solutions of these sessions is featured below, feeding into the different parts of the report.

The participants of the *Rolling stock and operations (RS/OPE)* session made a ranking of preselected solutions and estimated the average costs in terms of investment, effort and time compared to their benefits. The results are shown in

Торіс	Cost in million EUR (indicative)	Time (indicative)	Complexity	Benefit
1. Eco-driving training for drivers	0.1	8 months	Low	2% (1%-3%)
2. DAS	0.8	2.5 years	High	6%-7% (3%-10.5%)
3. Connected DAS (additional UNIFE input)	1.5	1.5 years	High	11% (5.5%-16.5%)
4. Eco-stabling (manual)	0.01	1 year	Medium	1.8% (0.9%-2.7%)
5. Eco-stabling HVAC (automatic)	0.24	1 year	Medium	1.8% (0.9%-2.7%)
6. Optimise traction converter software	0.8	2 years	High	4% (2%-6%)
7. Occupancy-dependant fresh air intake	0.1	1.5 years	Medium	0.6% (0.3%-0.9%)
8. HVAC heat pumps	0.4	2years	High	0.7% (0.1%-10%)
9. Optimise traffic management	1.2	3 years	High	4% (2%-6%)

Remark: All values are given as an indication by the participants, typically with a range of + 100%

Complexity scale

Low (only one system affected) Medium (> one system or 2 units) High (>2 systems and more than 2 units)

Table 5 below.

The numbers indicated here are indicative, after a group assessment during the session.

Торіс	Cost in million EUR (indicative)	Time (indicative)	Complexity	Benefit
1. Eco-driving training for drivers	0.1	8 months	Low	2% (1%-3%)
2. DAS	0.8	2.5 years	High	6%-7% (3%-10.5%)
3. Connected DAS (additional UNIFE input)	1.5	1.5 years	High	11% (5.5%-16.5%)
4. Eco-stabling (manual)	0.01	1 year	Medium	1.8% (0.9%-2.7%)
5. Eco-stabling HVAC (automatic)	0.24	1 year	Medium	1.8% (0.9%-2.7%)
6. Optimise traction converter software	0.8	2 years	High	4% (2%-6%)
7. Occupancy-dependant fresh air intake	0.1	1.5 years	Medium	0.6% (0.3%-0.9%)
8. HVAC heat pumps	0.4	2years	High	0.7% (0.1%-10%)
9. Optimise traffic management	1.2	3 years	High	4% (2%-6%)

Remark: All values are given as an indication by the participants, typically with a range of $\,$ + / 50% $\,$

Complexity scale

Medium (> one system or 2 units) High (>2 systems and more than 2 units)

Table 5: Rolling stock and operations solutions as rated during the UIC Energy Saving workshop session

1. Participants at the *Infrastructure and stations (Infra/Stations)* session gave a detailed set of focus areas for the solutions and challenges related to infrastructure management activities:

Infrastructure focus areas & specific solutions

Low (only one system affected)

- Traction system losses
 - Efficient timetabling

- Connected driving advice for drivers (IM timetable & IM disruption management for operators)
- Optimal track setup (gradients, curves, and speed limits)
- Maximising energy recovery from braking
- Efficient distribution of recovered energy (reuse in the IM grid or transfer to the public grid)
- Avoid peak demand to reduce losses
- De-icing and point/switch heating saving potential

Building and station focus areas

- Monitoring
 - Unclear about the costs: storing and analysing data
- Lighting & dimming
 - LED since stations require a lot of lighting
- Behaviour
 - o Involvement of staff by any means
- Technology
 - Cost & time for installing renewable energy
 - Cost & time for installing energy storage systems
- 2. The Energy procurement, contracts, and partnerships (Energy markets) session addressed the specificities of energy purchasing setups for railways in European countries via a questionnaire, and identified the common challenges. As a start, Figure 25 shows how the interactions of railways with the energy market may be organised, considering that, in some cases, the railways themselves can be an energy market stakeholder too.

Market types

RU contract with supplier	 Simplemarket with choice Choice of suppliers RU energy procurement Standard energy rates Little complexity 	 Developedmarket RU energy procurement Wide choice of purchasing strategies available Choice of suppliers Risk on RU side
IM* contract with supplier or National Body	 Simplemarket IM energy procurement Standard energy rates for users Little involvementfrom RUs 	 Developed IMmarket IM energy procurement RUs can negotiate their own conditions Risk on RU side
	Simple contract	Developed contract

Figure 25: Defining the possible setup for a railway's management of energy contracts in a country

According to the information collected on market organisation during the session, it was possible to show where each participating country would fall within the possible setups (Figure 26).

Market types - where do countries sit?

Figure 26: Energy market type by country, according to setups defined in Figure 25

To summarise the session:

- Energy management for the railway market is organised differently from country to country, which makes a unified approach challenging
- The railways invest substantial effort in connecting railway infrastructure to renewable energy, which helps limit exposure to electricity price fluctuations, as battery trains (and energy storage in general) could also partially help to reduce stresses on the energy grid at peak times.
- Railways want to support countries in reaching their climate transport goals. But, with the energy market's strategy being to shift risk onto the end consumer, and due to prices in 2023 being higher than in previous years, it is hard for railways to stay profitable and viable. If rail is not a competitive transport mode, transport demand will shift to more polluting and less energy efficient but cheaper modes of transport (likely with higher external costs).

5.1. Rolling stock

This section introduces a set of solutions that were shared among the UIC Energy Saving Taskforce members regarding measures or actions to be undertaken on rolling stock and its hardware to improve efficiency and save energy.

As introduced in the assessment of measures to reduce traction energy consumption, by Douglas et al. 2015, the main energy saving principles for train design are to:

• Maximise drive-chain and motors efficiency through their design

- Reduce the resistance to motion with:
 - A reduction in train mass (the energy saved is approximately half of the mass reduction, eg -10% mass would save 5% energy)
 - More aerodynamic trains (even though the benefits are not as high at lower speeds, and resistance is always present and amplified in tunnels. The consumption resulting from a poor aerodynamic profile, although small, cumulates over time, and may be worth streamlining for all trains), see 5.1.9 Aerodynamic efficiency Aerodynamic efficiency of rolling stock
- Be equipped with efficient and smarter auxiliary systems (computer-based management), (see *5.1.6, 5.1.7*)

For a proper understanding, section *5.1 Rolling stock*, refers to measures on the rolling stock's built-in hardware energy consumption, and anything to do with adjusting the rolling stock's equipment management or software enhanced management for energy saving is described in section *5.2 Operations*.

Overview of rolling stock solutions

The following diagram (Figure 27) gives an overview of the solutions for improved rolling stock equipment.

This overview is not an exhaustive list, but the result of brainstorming for, and during the Energy Saving workshop mentioned above. More specific solutions forming part of the catalogue may not be appear here.

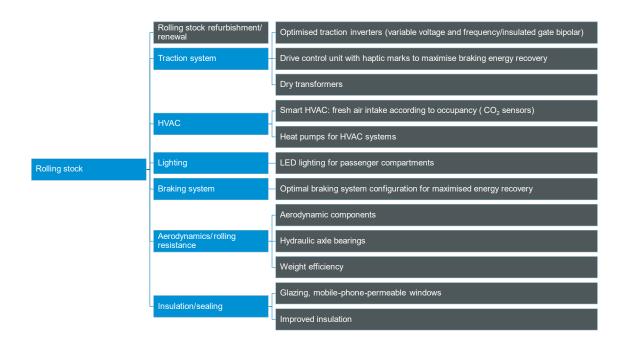


Figure 27: Overview of rolling stock hardware upgrade solutions, as an outcome of the rolling stock and operations session of the UIC Energy Saving workshop

5.1.1. Master Silicon Carbide (SiC) semiconductors

	Innovation	Ease/rapidity/aff.	Benefits		
Level	High	Low	High		
Special note	Inventive solution				
-					
Field	Traction systems				
Field	Traction systems	h semi-conductor tech	vologios within		
Solution	traction systems com		inologies within		
Description	State-of-the-art trains are equipped with IGBT converters. In the future they will be replaced by silicon carbide converters, that allow a higher switching frequency and cause lower losses within the propulsion system. Due to the higher switching frequency the harmonics of the input and output currents are reduced. This leads to lower harmonic losses of the motor, inductor and transformer. Furthermore, silicon carbide converters have a lower weight what further reduces the energy usage.				
Objective	More efficient traction systems thanks to new SiC semi- conductors i.e. very low losses technology				
How to	The technology can be applied to converters for new or refurbished trains.				
Costs and resources required	Power electronics price category. Refurbishment efforts and investment and/or new vehicles procurement investment.				
Benefits Effects	 Reduced life cycle cost thanks to lower maintenance (up to - 15%) and energy costs (up to -20%) and capital cost reduction via virtual validation & certification Benefits compared to silicon based technology (Knorr-Bremse, UIC Refurbishment of rolling stock 2016 workshop): 8x higher switching frequencies lead to smaller magnetic components Higher breakdown voltage Better thermal management Potential converter weight reduction by ~20% Potential converter size reduction by ~20% 				
Effects (CO ₂)		ving and electricity ger			
Ease of implementation	Applied to rail tractior regional)	n systems (tramway, m	ietro, sub-urban,		
Constraints, challenges, or lessons learnt	-				
S/M/L term	Medium term	-			
Efficiency	Reduced losses. Knorr-Bremse achieved 3% savings in 2017 by only focusing on size and weight.				
Maturity	Solutions ready for p				
Mentioned by	 Shift2Rail PINTA projects SNCF (5.3.17 Medium voltage direct current electrification systems) Knorr-Bremse 				
Experience	-	-			

Comment

- https://projects.shift2rail.org/s2r_ip1_n.aspx?p=PINTA
- <u>https://projects.shift2rail.org/s2r_ip1_n.aspx?p=PINTA2</u>
- <u>https://projects.shift2rail.org/s2r_ip1_n.aspx?p=PINTA3</u>

5.1.2. Insulated gate bipolar transistor (IGBT) traction converters

แน	clion converters			
	Innovation Ease/rapidity/aff. Benefits			
Level	High Low High			
Special mete				
Special note	Inventive solution			
Field	Optimal energy consumption for operations			
Solution	Wideband electronic power semiconductors that can replace silicon-based components (insulated-gate bipolar transistor (IGBT))			
Description	Retrofitting traction converters to insulated gate bipolar transistor (IGBT) inverters			
Objective	Reduce losses in energy conversion for traction. Fixes possible obsolescence due to the non-availability of parts for older traction converters			
How to	Replace older traction converter units or switch modules within a traction converter with more efficient IGBT technology			
Costs and resources required	Hardware upgrade: High cost, high risk solution for older locomotives and EMUs Software optimisation: Approximately 0.8 million euro per locomotive.			
Benefits Effects	Hardware upgrade: Reduce losses in energy conversion for traction. Fixes possible obsolescence due to the non-availability of parts for older traction converters. Can extend the service life of locomotives or EMUs Software optimisation: Around 4% improvement in energy efficiency over the total traction energy consumption (evaluated by SBB over 100000 commercial operations with different coaches to figure the energy savings).			
Effects (CO ₂)	According to the electricity production mix for a reduction of around 4% in traction energy consumption			
Ease of implementation	Hardware upgrade: High risk, lots of engineering required			
Constraints, challenges, or lessons learnt	Hardware upgrade: Can have an impact on other systems like odometry, train protection systems, accreditation			
S/M/L term	Hardware upgrade: Long-term Software optimisation: Mid-term			
Efficiency	For SBB, very high (4-8%), depending on the current traction converter 12,4% of traction energy saving compared to GTO traction converter (NomadTech, UIC Refurbishment of rolling stock 2016 workshop)			
Maturity	High			
Mentioned by	SBB, DB, Shift2Rail, NomadTech			

Experi	ence See above			
Comm	ent -			
https://news.sbb.ch/artikel/117742/modernisierung-re-460-der-erste-prototyp-				
	ist-auf-der-schiene			

• <u>https://news.sbb.ch/artikel/73490/modernisierungsprogramm-fuer-die-re-460</u>

 Reference for the energy saving assessment: https://news.sbb.ch/artikel/98756/das-zugpferd-der-bahn-2000-faehrt-immerklimafreundlicher

5.1.3. Electromechanical Brake System (EMB)

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Low	High

Special note

Inventive solution

Field	Braking system
Solution	New generation of Electromechanical Brake System
Description	New generation of Electro Mechanic Brake devices that enables the transition towards the air-less trains, simplifying the train's architecture (brake-by-wire) and supports the removal/reduction of air compressor (weight and energy reduction)
Objective	Achieve weight and energy consumption reduction
How to	-
Costs and resources required	-
Benefits Effects	 Energy savings of up to 15% Weight reduction Efficient regeneration Reduced use of material (copper)
Effects (CO ₂)	-
Ease of implementation	Rolling stock compatibility or procurement
Constraints, challenges, or lessons learnt	Research Early adoption
S/M/L term	Long Term
Efficiency	-
Maturity	Expected to be ready for serial production in 2026 Good applicability perspectives for all types of passenger trains, linked with effective migration to air-less solution of other sub- systems (e.g. suspension, pantograph, MTB)
Mentioned by	Shift2Rail PIVOT projects
Experience	-

https://projects.shift2rail.org/s2r_ip1_n.aspx?p=pivot
 https://projects.shift2rail.org/s2r_ip1_n.aspx?p=pivot2

5.1.4. Maximise braking energy recovery

5.1.4.	Maximise	braking energy	yrecovery
	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High
Special note	Inventive solution		
Field	Optimise energy co	nsumption during opera	tion
Solution	give haptic feedbac drivers	ve braking over other br k regarding maximum b	raking efficiency to
Description	The use of regenerative brakes should be maxed out before other brake systems are blended in For passenger trains, it is possible to define a notch (one for driving, one for braking) at the brake handle at points of high system efficiency to give haptic feedback to the driver		
Objective	Maximise regenera	tive braking and optimis	e train operation
How to	brake handle. Defin highest drive efficie handle at the point the majority of the t Which brake systen determined by the t accordingly The blending and s braking systems mu conditions and mus	modern trains are oper- e a notch on the handle ncy, approx. 75%. Defin where only regenerative ime, approx50% n is used at which point rain TCMS which must b witch-over timing betwee ust consider different fail t comply with local stand ss by accompanying this	at the point of le a notch on the braking is applied for of operation is be programmed en the different lure scenarios, friction dards
Costs and resources required	Engineering to calc TCMS programmin Installing notches o		val
Benefits Effects	-	nerative brake energy be ar of mechanical brakes	•
Effects (CO ₂)	Dependent on the p	primary energy mix	
Ease of implementation	Medium		
Constraints, challenges, or lessons learnt	feeding back th limited in some	enerative braking and th e regenerated energy in countries nt, see EN 50388-1	
S/M/L term	Long term		
Efficiency	High (SBB has managed to recover more than 43% of long- distance trains' traction energy thanks to an efficient regenerative braking strategy, including this solution. Long-distance trains have an optimised journey profile thanks to their adaptive driving app. Therefore, the maximising of regeneration levels in deceleration phases (coasting & braking) will result in optimal recovery levels. It also considers recovered energy in the rail grid.)		

Maturity	Mature
Mentioned by	SBB, BLS, SOB,
wentioned by	Renfe (optimal recovery with rolling stock)
Experience	Involve senior train drivers at an early stage to implement a
Experience	usable and accepted solution
Comment	Complementary driver training is highly recommended

5.1.5. Dry transformers

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High

Special note

Et al al	Outine language second in the second in the
Field	Optimal energy consumption for operations
Solution	Vehicles with a dry transformer require less energy than
	comparable vehicles using a conventional, oil-cooled transformer
Description	 Due to the oil-free operation and the resulting reduced weight, the active mass of the conductor materials can be increased. The losses are reduced, both in terms of purchasing electrical energy and of recuperation Pumps and sensors for monitoring and circulating the oil are completely omitted in a dry transformer, which reduces the energy requirements of auxiliary operations. In addition, the costs for maintenance are reduced correspondingly
Objective	To reduce the vehicles' energy requirements
How to	 Due to the oil-free operation and the resulting reduced weight, the active mass of the conductor materials can be increased. This reduces losses, both in terms of purchasing electrical energy and of recuperation The pumps, sensors, etc. required for monitoring and circulating the oil are completely eliminated. E.g., the 2.9kW transformer oil pump is no longer needed, which reduces the need for auxiliary operations
Costs and resources required	SNCF: Expensive hardware
Benefits Effects	A more than 7% reduction in a vehicle's energy consumption by no longer using an oil-cooled transformer Annual saving by using dry transformers is approx. 9000CHF (approx. 9400€/10300\$) per vehicle. In addition, the specific energy consumption per gross tonne-kilometre changes
Effects (CO ₂)	-
Ease of implementation	-
Constraints, challenges, or lessons learnt	The double traction measurement runs show savings of between 7.5% and 12.5% of the total energy consumption. The reported potential of 7% to 10% therefore seems realistic
S/M/L term	-
S/M/L term Efficiency	- A potential saving of 78.9MWh per vehicle per year

Mentioned by	-
Experience	 SBB's pilot: An oil transformer vehicle draws a total of 393.5kWh of energy, 168.7kWh of which are recuperated. The net demand is therefore 224.8kWh A dry transformer vehicle draws 368.7kWh of energy (-6.3%), of which 171.9 kWh is recuperated (+1.8%), the net demand is therefore 196.8 kWh (-12.5%)
Comment	-
	ews.sbb.ch/artikel/117742/modernisierung-re-460-der-erste-prototyp- er-schiene

- https://news.sbb.ch/artikel/73490/modernisierungsprogramm-fuer-die-re-460
- Reference for the energy saving assessment: <u>https://news.sbb.ch/artikel/98756/das-zugpferd-der-bahn-2000-faehrt-immer-klimafreundlicher</u>

5.1.6. Heat pumps for enhanced HVAC efficiency

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	Low	High

Special note

Field	Optimal energy consumption for heating, ventilation, air conditioning and cooling (HVAC)
Solution	Replacing conventional heating systems with the most efficient type of heating or cooling system. Also enabling the use of natural refrigerants (hence avoiding potential leaks of powerful greenhouse gas), for an eco-friendly air conditioning (S2R)
Description	Heat pumps are inherently more efficient than common electric heaters; The use of heat pumps may lead to substantial energy savings in heating as their performance is between two and four times above common electrical resistors. Moreover, heat pumps are capable of working as air-conditioning units when cooling is required, avoiding the need for double the equipment and consequently allowing for weight savings Their capacity can also be optimally regulated according to demand, for instance by means of variable frequency compressors (A. González-Gil et al., 2014). S2R: A heat pump can be integrated to reduce the energy usage for heating. This technology can be applied for new trains or during the refurbishing of existing trains. Additionally, future systems for HVAC use natural gases like air or CO2. Compared to state-of-the-art HVACs with artificial gases they have a highly reduced climatic impact.
Objective	Save energy spent for heating, cooling, or ventilation for rolling stock (and avoid artificial refrigerant leaks, i.e. powerful greenhouse gas emissions)

How to	Using inherently more efficient (known) heating and cooling technologies. Heat pumps having the specific advantage to being able to provide both heat and cold air, thus can help reduce the overall weight of a train.		
Costs and resources required	Refurbishment efforts and investment, according to HVAC system complexity, and/or new vehicles procurement investment.		
Benefits Effects	 Reducing traction energy consumption: By reducing the train's weight By increasing the HVAC system's efficiency S2R: Energy savings up to 20% due to integrated heat pump Reduction of global warming due to avoidance of synthetic refrigerants like R134a Overcome the constraint to use synthetic refrigerants 		
Effects (CO ₂)	Avoiding artificial/fluorinated (powerful greenhouse gas) refrigerants, thus avoiding stray leaks of usual air conditioning systems		
Ease of implementation	According to HVAC system complexity for refurbishment. Easier if the technology is directly designed for use in the new rolling stock		
Constraints, challenges or lessons learnt	The complexity of rolling stock HVAC systems makes it hard to implement. Easier if the HVAC system is centralised		
S/M/L term	Short/medium term		
Efficiency	-		
Maturity	S2R: Good perspectives, applicable for all passenger train segments. Expected to be ready by 2024		
Mentioned by	SBB, UIC, S2R PIVOT projects		
Experience	-		
Comment	-		
https://projects.shi	ft2rail.org/s2r_ip1_n.aspx?p=pivot		

https://projects.shift2rail.org/s2r_ip1_n.aspx?p=pivot

https://projects.shift2rail.org/s2r_ip1_n.aspx?p=pivot2

5.1.7. Smart/automated heating, cooling and ventilation (HVAC)

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High

Special note

Field	HVAC energy saving
Solution	 Automatic HVAC adjustment to carriage CO₂ levels Automatic HVAC adjustment to carriage thermostats Automatic HVAC adjustment to weather data and forecasts Auxiliary converters with variable frequencies to supply HVAC systems (condensers and compressors)
Description	This HVAC system can adapt the ventilation to current needs for passenger compartments based on CO ₂ levels or live temperature
Objective	Reduce the energy consumption

How to	Smart HVAC management: CO ₂ monitoring tends decrease energy costs by cutting ventilation, heating, and cooling at off- peak times. By fitting CO ₂ detectors, the onboard HVAC system can monitor the air quality and evaluate the number of passengers. Using this information, the system can control fresh air intake from the outside (e.g., flaps with 3-4 positions), and accurately regulates temperature according to passenger requirements, therefore reducing power consumption				
Costs and resources required	Price of retrofitting HVAC system with sensors, or with new rolling stock				
Benefits Effects	 Energy savings Improved air quality in wagons, thus improving passenger comfort Improved temperature regulation, thus improving passenger comfort 				
Effects (CO ₂)	According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to reduced HVAC demand.				
Ease of implementation	Requires upgraded hardware and software in all carriages				
Constraints, challenges or lessons learnt	Education of the staff to new systems and proper management				
S/M/L term	According to retrofitting possibility: Short term if the HVAC system can easily be paired with sensors Medium/long term if the HVAC system is not flexible, or change is relying on a fleet renewal				
Efficiency	High				
Maturity	CO ₂ -adapted ventilation fully developed and deployed by SBB (heating/cooling - not yet)				
Mentioned by	SBB				
Experience	-				
Comment	-				

5.1.8. Lighting system upgrades

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	Medium	Medium

Special note

Field	Improvements and alterations to rolling stock		
Solution	Upgrading lighting on fleets		
Description	 Light-emitting diode (LED) lighting has proven to be more energy efficient while having a longer lifespan than previous lighting technologies Trenitalia: Installed LED lighting where absent (e.g., new Vivalto double-deck carriages and medium-distance coaches) on the DBR (Divisione Business Regionale) (regional trains) fleet and replacing on-board lighting fixtures with LED technology on the entire DBIC fleet SBB: Switching to LED lighting 		

Objective	Reduce the energy consumption of current fleet lighting and AC systems. Benefits expected in 2023-2024			
How to	Current systems replacement			
Costs and resources required	LEDs are slightly more expensive than other types of lamps, but are much more efficient and now have a much longer lifespan			
Benefits Effects	Efficiency of LEDs can be much higher for a similar lighting level (LED bulbs use around 80% less energy than incandescent bulbs and 40% less than halogen, according to FS RFI)			
Effects (CO ₂)	According to electricity production mix for a reduction of lighting energy consumption. Reduced exhaust emissions due to reduced auxiliary system demand.			
Ease of implementation	Dependent to the initial rolling stock lighting system			
Constraints, challenges or lessons learnt	Retrofitting a specific rolling stock lighting system can add complexity			
S/M/L term	Medium (short a small fleet level)			
Efficiency	(Cost over effect)			
Maturity	Mature			
Mentioned by	FS Trenitalia, SBB			
Experience	-			
Comment	-			

5.1.9. Aerodynamic efficiency of rolling stock

	Innovation	Ease/rapidity/aff.	Benefits	
Level	Medium/High	Low	High	
Special note	Inventive solution			
Field	Reducing rolling resis	tance		
Solution	Reduce air resistance to the minimum possible by improving fairing (especially crucial at high speeds but not only)			
	• SNCF: Improve high-speed train fairings to facilitate airflow in order to reduce the impact of air resistance on rolling stock The most recent fairings are thought to better penetrate the air, reducing friction and decreasing energy consumption.			

Description	 air, reducing friction and decreasing energy consumption. Aerodynamic effects of tunnels will result in a significant increase in train energy consumption shorten life of railway train/tunnel system, and increase maintenance cost (Niu et al., 2020). Because of that specific constraint, thinking about the most aerodynamic profile for rolling stock that will operate through tunnels (or closed/semi-closed sections) is important (or operate most aerodynamic rolling stock). 	
Objective	Reduce traction energy consumption by optimising airflows	
How to	 New rolling stock Adaptation of older rolling stock's fairing after study and tests Even though the benefits are not as high at lower speeds, resistance is always present and amplified in tunnels. The 	

	consumption resulting from a poor aerodynamic profile, although small, cumulates over time, and may be worth streamlining for all trains: Prioritise from higher speeds and highest number of tunnels tracks, to lower. Air resistance can be studied via modelling with computational				
Costs and resources required	fluid dynamics software (CFD) -				
	SNCF: A 20% reduction in energy consumption is expected by deploying the new TGV M. (Contribution of both improved traction system's efficiency and improved train aerodynamics of fairing, pantographs and wheelsets (between 15% and 20%)) Case study: Avelia Horizon vs. Euroduplex				
	Eurodupiex (RGV 2N2)				
	Traction Improved traction efficiency; reducing energy consumption Increased use of electrical base Modified tractive effort curve for lower overall power Constraint VECTOR VECTOR				
Benefits	Resistance to motion Aerodynamic improvements (nose shupe, fairings) Rev energy vs. (nose shupe, fairings) - a to 9.				
Effects	Auxiliaries Reducton of traction auxiliaries consumption thanks to LED				
	HVAC HVAC resizing and improved PAVAC resizing and improved PAVAC resizing and improved 25 to 35%				
	Avelia Horizon				
	How to reduce energy consumption of high-speed trains – Alstom experience 9 Source: UIC Alstom (see footer) • Energy saving • Noise reduction • Power management •				
Effects (CO ₂)	According to electricity production mix for a reduction of electric traction energy consumption. Reduced exhaust emissions due to fairing reducing tractive effort required.				
Ease of implementation	Costs for studies and testing and for the deployment of the modification Time lost for rolling stock maintenance instead of being in service				
Constraints, challenges or lessons learnt	In the equation F= a+bv+cv ² , where c (coefficient of friction) increases with the squared velocity (v) is a priority to be worked on In terms of air penetration, the aerodynamic wake of the train is an important issue (the Davis coefficients, a, b, c are constants that are found by analysing the train dynamics, and relate to the static resistance, rolling resistance and aerodynamic resistances respectively)				
S/M/L term	Medium/long term				
Efficiency	Relative to operation speed and stopping frequency. But any improvement will result in energy savings.				
Maturity	High for high-speed				
-	SBB, SNCF, Renfe				
Mentioned by					
Mentioned by Experience	TGV M, AVE (Pato), Shinkansen				

la-techno-du-nouveau-fleuron-de-la-sncf

53

 UIC High-speed rail Congress, Alstom presentation, 3.3 Operations/Energy efficiency, Morocco, 2023 <u>https://uichighspeed.org/submissions/</u>

5.1.10. Hydro-elastomeric axle-guide bearings

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Low	High

Special note More experience sharing needed

Field Reducing rolling resistance Solution Hydro-elastomeric axle-guide bearings for double-sided use in axle-guide bearings of rail vehicles. Description Hydro-elastomeric axle-guide bearings with internal and/or external hydraulic damping for use in axle-guide bearings Hydro-elastomeric axle-guide bearings have a high longitudinal stiffness during high speeds, and a low longitudinal stiffness, especially during slow cornering, to reduce wheel abrasion and keep wear and maintenance as low as possible Objective Reduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional axle-guide bearings. How to elastomeric axle guidig bearings replace conventional devices. Costs and resources required The higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for resources Reduce vach rolling resistance, wear and wheel/rail abrasion, effects Reduce rolling resistance, wear and wheel/rail abrasion, effects Effects resulting in decreased traction energy consumption According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required. Ease of implementation Form, fit, function replacement, but possible expenses for the approval process Constraints, challenges, or lessons learnt Used in most long-distance railway coaches in Switzerland, that don't have active axle-guidin						
Solution axle-guide bearings of rail vehicles. Pescription Hydro-elastomeric axle-guide bearings with internal and/or external hydraulic damping for use in axle-guide bearings Hydro-elastomeric axle-guide bearings have a high longitudinal stiffness during high speeds, and a low longitudinal stiffness, especially during slow cornering, to reduce wheel abrasion and keep wear and maintenance as low as possible Objective Reduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional axle-guide bearings. How to Hydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices. Costs and resources required The higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval process Benefits Effects (CO2) energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required. Ease of implementation Form, fit, function replacement, but possible expenses for the approval process Constraints, challenges, or lessons learnt Used in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price" SIML term Long-term <th>Field</th> <th>Reducing rolling resistance</th>	Field	Reducing rolling resistance				
Description Hydro-elastomeric axle-guide bearings with internal and/or external hydraulic damping for use in axle-guide bearings Hydro-elastomeric axle-guide bearings have a high longitudinal stiffness during high speeds, and a low longitudinal stiffness, especially during slow cornering, to reduce wheel abrasion and keep wear and maintenance as low as possible Objective Reduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional axle-guide bearings. How to Hydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices. Costs and resources required The higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval process Benefits Reduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumption According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required. Ease of implementation Form, fit, function replacement, but possible expenses for the approval process Used in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price" S/ML term Long-term Efficiency Approx. 5 to 7.5MWh per Eurocity coa	Solution					
Descriptionexternal hydraulic damping for use in axle-guide bearings Hydro-elastomeric axle-guide bearings have a high longitudinal stiffness, especially during slow cornering, to reduce wheel abrasion and keep wear and maintenance as low as possibleObjectiveReduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional axle-guide bearings.How toHydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processOwnLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApprox dy SBB after trialsMentioned bySBB SBB after trialsCommentHALL Hydro elastomeric axle-guide bearings						
DescriptionHydro-elastomeric axle-guide bearings have a high longitudinal stiffness during high speeds, and a low longitudinal stiffness, especially during slow cornering, to reduce wheel abrasion and keep wear and maintenance as low as possibleObjectiveReduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional axle-guide bearings.How toHydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/ML termLong-termEfficiencyApproved by SBB after trials Mentioned byMaturityApproved by SBB after trials Mentioned byMentioned bySBBExperienceEstablished Establ						
Description stiffness during high speeds, and a low longitudinal stiffness, especially during slow cornering, to reduce wheel abrasion and keep wear and maintenance as low as possible Objective Reduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional axle-guide bearings. How to Hydro-elastomeric axle guide bearings replace conventional elastomeric axle guide bearings within the bogie as "form, fit" devices. Costs and resources required The higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval process Benefits Reduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumption According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required. Ease of implementation Form, fit, function replacement, but possible expenses for the approval process Constraints, challenges, or lessons learnt Used in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price" S/M/L term Long-term Efficiency Approx. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)						
stiffness during high speeds, and a low longitudinal stiffness, especially during slow cornering, to reduce wheel abrasion and keep wear and maintenance as low as possibleObjectiveReduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional akle-guide bearings.How toHydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumption According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB BBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings <th>Description</th> <td></td>	Description					
keep wear and maintenance as low as possibleObjectiveReduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional axle-guide bearings.How toHydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffects (CO2)According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/ML termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	Decemption					
ObjectiveReduce wear and wheel and rail abrasion, resulting in decreased energy consumption. Has the same service life as conventional axle-guide bearings.How toHydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processS/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB SBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings						
Objectiveenergy consumption. Has the same service life as conventional axle-guide bearings.How toHydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffects (CO2)According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trials Mentioned byMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings						
axle-guide bearings.How toHydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or leesons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox.5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings						
How toHydro-elastomeric axle guide bearings replace conventional elastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApproved by SBB after trials Mentioned by SBBMentioned bySBBExperienceEstablished EstablishedCommentHALL Hydro elastomeric axle-guide bearings	Objective					
How toelastomeric axle guiding bearings within the bogie as "form, fit" devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/W/L termLong-termEfficiency MaturityApproxed by SBB after trials Mentioned by SBBMentioned by SBBSBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings						
devices.Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/W/L termLong-termEfficiencyApproved by SBB after trials Mentioned by SBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings						
Costs and resources requiredThe higher costs of the hydro-elastomeric axle-guide bearings will be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffects (CO2)According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Constraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/WL termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	How to	elastomeric axle guiding bearings within the bogie as "form, fit"				
Costs and resources requiredwill be compensated for by a reduced cost per kilometre for railway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsForm, fit, function replacement, but possible expenses for the approval processUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trials<						
resources requiredrailway coaches (reduced rolling resistance for each equipped coach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApproved by SBB after tr						
requiredcoach/wagon) Possible costs for the approval processBenefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	Costs and					
Possible costs for the approval processBenefitsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionEffects (CO2)According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApproved by SBB after trials Mentioned byMaturityApproved by SBB after trials HALL Hydro elastomeric axle-guide bearings		railway coaches (reduced rolling resistance for each equipped				
Benefits EffectsReduced rolling resistance, wear and wheel/rail abrasion, resulting in decreased traction energy consumptionAccording to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	required	coach/wagon)				
Effectsresulting in decreased traction energy consumptionEffects (CO2)According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings		Possible costs for the approval process				
Effects (CO2)According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	Benefits					
Effects (CO2)energy consumption. Reduced exhaust emissions due to bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	Effects					
bearings reducing tractive effort required.Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings						
Ease of implementationForm, fit, function replacement, but possible expenses for the approval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	Effects (CO ₂)					
implementationapproval processConstraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings						
Constraints, challenges, or lessons learntUsed in most long-distance railway coaches in Switzerland, that don't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings						
Constraints, challenges, or lessons learntdon't have active axle-guiding systems. Even regional EMUs are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	implementation					
challenges, or lessons learntdon't have active axie-guiding systems. Even regional EMOS are being fitted with this technology, due to the benefit of having a lower "train-path price"S/M/L termLong-termEfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings	O a ma final in fa					
lessons learnt being fitted with this technology, due to the benefit of having a lower "train-path price" S/M/L term Long-term Efficiency Approx. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km) Maturity Approved by SBB after trials Mentioned by SBB Experience Established Comment HALL Hydro elastomeric axle-guide bearings	,					
S/M/L term Long-term Efficiency Approx. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km) Maturity Approved by SBB after trials Mentioned by SBB Experience Established HALL Hydro elastomeric axle-guide bearings	U /					
EfficiencyApprox. 5 to 7.5MWh per Eurocity coach (single deck) per year (travel distance 300,000km)MaturityApproved by SBB after trialsMentioned bySBBExperienceEstablishedCommentHALL Hydro elastomeric axle-guide bearings		lower "train-path price"				
Efficiency (travel distance 300,000km) Maturity Approved by SBB after trials Mentioned by SBB Experience Established Comment HALL Hydro elastomeric axle-guide bearings	S/M/L term	Long-term				
Maturity Approved by SBB after trials Mentioned by SBB Experience Established MALL Hydro elastomeric axle-guide bearings	Efficiency					
Mentioned by SBB Experience Established Comment HALL Hydro elastomeric axle-guide bearings	Linciency					
Experience Established Comment HALL Hydro elastomeric axle-guide bearings	Maturity	Approved by SBB after trials				
Comment HALL Hydro elastomeric axle-guide bearings	Mentioned by	SBB				
	Experience					
HALL Bearing Anti-vibration-solutions (trelleborg.com)	Comment	HALL Hydro elastomeric axle-guide bearings				
	Comment	HALL Bearing Anti-vibration-solutions (trelleborg.com)				

5.1.11. Thermal efficiency and insulation of rolling stock

	Innovatior	ı	Ease/rapidity/at	ff.	Benefits
Level	Medium		Low		Medium
Field	Thermal efficiency and insulation of rolling stock				
			of rolling stock to		
Solution	generated by	• •	-	Total	
Description			f rolling stock		
Objective	Reduce energy losses due to poor insulation which in turn is compensated for by a more intense use of the HVAC systems				
How to	• S2R: Inn • S2R: Inn • I • I • I • I • UIC: • UIC: • I • UIC: • I • I • I • I • I • I • I • I	energy con Scheiben) mproved i ovative do New conce on metallic parts, inno solutions f and weigh comfort the nsulation, nfrastructo plastic or o New door weight red composite architectur Better insu and bodies substantia not)) Triple glaz Vehicle pa can reduce when in fu avour abs The use of nsulation Vindow fil plocked us reflected)	nsumption of cellu insulation and sea oor leaves and sea ept design of meta carchitecture intro ovative filling mate or thermal insulati t optimisation. It w anks to improved and reduce weigh ure or train weight on of an optimised composite solution leaves designed fil uction and cost by materials, manufa re. allation (properly se s with auto closing I HVAC energy co- ing inting (white exter	lar re ling c aling allic d ducir rials a on, a fill im therm t for cons meta cons for the cons acturi ealed dool nsun tures t for c light aint c o the ed 99 o 35%	of train bodies oor leaves based ng plastic/composite and sealing coustic attenuation, prove passenger nal and acoustic less impact on the straints with the al solution or a ermal insulation, ecting the best ing process and windows, doors rs (avoiding nption (parked or in hotter countries by up to 5 degrees colder climates to cover reflection). can also enhance body) % of UV can be % of heat can be

	 Smart windows: windows which adjust their opacity according to sunlight levels to save energy on air- conditioning (A. González-Gil et al., 2014) 			
Costs and resources required	Refurbishment of car body elements, windows and listed elements costs. Rolling stock procurement efforts.			
Benefits Effects	HVAC energy saving			
Effects (CO ₂)	Related to energy savings and electricity generation mix			
Ease of implementation	Windows of rolling stock have to be replaced, the insulation needs to be adapted and fitted to existing stock. Both can be carried out during maintenance work			
Constraints, challenges or lessons learnt	Changes have to be compatible with onboard radiofrequencies use cases			
S/M/L term	Medium/long term			
Efficiency	-			
Maturity	HF-Scheiben are fully developed and are currently deployed across different rolling stock Insulation of older rolling stock (EW IV) completed			
Mentioned by	SBB, SNCF			
Experience	-			
Comment	-			

5.1.12. Weight and capacity of rolling stock (Innovative materials for lighter car body, doors, and train components)

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High
Special note	Inventive solution		
Field	Improved rolling stock	capacity and weight	
Solution	 procurement, when low). S2R: Light car bo S2R: New concept metallic architecture innovative filling metallic architecture insulation, acoust S2R: Lightweight S2R: Light runnin Lighter component 	ot design of metallic do ure introducing plastic/o naterials and sealing so ic attenuation, and wei Axle g gear frame nts	nt cost/benefit ratio is or leaves based on composite parts, plutions for thermal
Description	impact on traction eneFS Trenitalia: Flee	educe rolling stock's w	g for more energy

 Heat pump HVAC (one system for heat and cold, see 5.1.6 Heat pumps for enhanced HVAC efficiency) S2R: Lighter car body New materials, processes and technologies in the current car body concepts scalable for manufacturin Hybrid solutions with metallic/composites components due to optimal combination of properties and requirements for highspeed trains Substitution of welded extruded aluminium profiles by pultruded Carbon Fiber Reinforced Plastics (CFRP) and/or one-shot infusion panels of sandwich and CFRP Hybrid concept for validation metallic and composite components (manufactured with different technologies) due to optimal combination of properties and requirements S2R: Innovative door leaves and sealing New door leaves designed for thermal insulation, 	
 New materials, processes and technologies in the current car body concepts scalable for manufacturin Hybrid solutions with metallic/composites components due to optimal combination of propertie and requirements for highspeed trains Substitution of welded extruded aluminium profiles by pultruded Carbon Fiber Reinforced Plastics (CFRP) and/or one-shot infusion panels of sandwich and CFRP Hybrid concept for validation metallic and composite components (manufactured with different technologies) due to optimal combination of properties and requirements S2R: Innovative door leaves and sealing 	_
S2R: Innovative door leaves and sealing	uring erties es vich
weight reduction and cost by selecting the best composite materials, manufacturing process and architecture	
 S2R: Lightweight axle A new lightweight axle which significantly reduces weight, unsuspended mass, time for wheelset maintenance, production cost while at the same time increases safety against cracks and breakdown 	
 S2R: Light running gear frame New materials, processes and technologies in the current running gear frames, substituting welded steel plates and profiles by monocoque CFRP structures and machined high end alloys reaching u to 50% reduction in weight compared to conventiona solutions Double deck trains 	g up
 Modular sets Make the most of the existing fleet's capacity (for a better consumption ratio per passenger transported) by retrofitting into or procuring high-capacity rolling stock. 	
• Achieve a significant weight reduction for the primary structures • Innovations consider new materials and concepts that result in lower boogie weight of and consequently in a reduction of energy usage of the train	
 Increase the performance of current metallic car body shells by incorporating composite materials int hybrid structures 	
 S2R: For the car body shell or parts of it, composite materia or fibre reinforced plastic may be used instead of aluminium or steel. This reduces the weight and consequently the energy usage of the train. UIC: See UIC-FFE 2017, part 1.2.2 New materials 	

57

resources required for suggested material might evolve with demand and production costs. Benefits Effects S2R: Up to 12% energy savings due to weight reduction. Improved passenger comfort (improved thermal and acoustic insulation) and reduce weight for less impact on the infrastructure or train weight constraints (optimised metal solution or a plastic or composite solution) FS: Reduced traction energy consumption by train-kilometre and by passenger/tonne-kilometre According to electricity production mix for a reduction of traction energy consumption due to lighter and higher capacity train (lower impact by passenger or tonne kilometre). Reduced exhaust emissions due to the reduced tractive effort required. Ease of implementation According to the specific improvement for lighter components or capacity upgrades, and rolling stock flexibility to adjustments. Otherwise through the purchase of new rolling stock. Constraints, challenges or lessons learnt Existing rolling stock flexibility S/M/L term Short/medium/long term according to component maintainability/modularity. Medium/long term for rolling stock heavy refurbishment or procurement. Efficiency Cost over effects: Medium, good payback over time S2R: Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Maturity Light car body: Solutions ready for prototype testing. Applicable to tramways, metros and up to very high speed trains market Light car body: Solutions ready for prototype testing. Applicable to the whole rail market Light running		
Costs and resources required Large retrofitting costs or investment into new rolling stock. Costs for suggested material might evolve with demand and production costs. Benefits Effects S2R: Up to 12% energy savings due to weight reduction. Improved passenger comfort (improved thermal and acoustic insulation) and reduce weight for less impact on the infrastructure or train weight constraints (optimised metal solution or a plastic or composite solution) FS: Reduced traction energy consumption by train-kilometre and by passenger/tonne-kilometre According to electricity production mix for a reduction of traction energy consumption due to lighter and higher capacity train (lower impact by passenger or tonne kilometre). Reduced exhaust emissions due to the reduced tractive effort required. Ease of implementation According to the specific improvement for lighter components or capacity upgrades, and rolling stock flexibility to adjustments. Otherwise through the purchase of new rolling stock. Constraints, challenges or lessons learnt Existing rolling stock flexibility S/M/L term Short/medium/long term for rolling stock heavy refurbishment or procurement. Efficiency Cost over effects: Medium, good payback over time S2R: Maturity Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Maturity Door leaves: Solutions available. Mainly applicable to regional / commuter rolling stock market worldwide and extended to tramways, metros and up to very high speed trains market Maturity Lig		more energy efficient trains, such as Pop, Rock, bimodal Blues, and new medium-capacity electric trains with a speed of 160km/h. These trains have a better consumption/passenger ratio For the IC fleet, a call for tenders has started to purchase
Benefits Effects S2R: Up to 12% energy savings due to weight reduction. Improved passenger comfort (improved thermal and acoustic insulation) and reduce weight for less impact on the infrastructure or train weight constraints (optimised metal solution or a plastic or composite solution) FS: Reduced traction energy consumption by train-kilometre and by passenger/tonne-kilometre According to electricity production mix for a reduction of traction energy consumption due to lighter and higher capacity train (lower impact by passenger or tonne kilometre). Reduced exhaust emissions due to the reduced tractive effort required. According to the specific improvement for lighter components or capacity upgrades, and rolling stock flexibility to adjustments. Otherwise through the purchase of new rolling stock. Constraints, challenges or lessons learnt S/M/L term Short/medium/long term according to component maintainability/modularity. Medium/long term for rolling stock heavy refurbishment or procurement. S/M/L term Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Maturity Light car body: Solutions ready for prototype testing. Applicable to the whole rail market in test period and subsequently metro application, available after 2023. Applicable to the whole rail market Maturity S2R: Shift2Rail PIVOT projects FS Trenitalia FS: High maturity S2R: Shift2Rail PIVOT projects FS Trenitalia	Costs and resources required	Large retrofitting costs or investment into new rolling stock. Costs for suggested material might evolve with demand and production
Effects (CO2)According to electricity production mix for a reduction of traction energy consumption due to lighter and higher capacity train (lower impact by passenger or tonne kilometre). Reduced exhaust emissions due to the reduced tractive effort required.Ease of implementationAccording to the specific improvement for lighter components or capacity upgrades, and rolling stock flexibility to adjustments. Otherwise through the purchase of new rolling stock.Constraints, challenges or lessons learntExisting rolling stock flexibilityS/M/L termShort/medium/long term according to component maintainability/modularity. Medium/long term for rolling stock heavy refurbishment or procurement.EfficiencyCost over effects: Medium, good payback over timeS2R: Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. >Door leaves: Solutions available. Mainly applicable to regional / commuter rolling stock market worldwide and extended to tramways, metros and up to very high speed trains marketMaturityLight running gear: Solution ready for prototype testing. Applicable to the whole rail market Light running gear: Solution ready for prototype testing. Applicable to the whole rail market Light running gear: Solution ready for prototype testing. Applicable to the whole rail marketMentioned byFS: High maturityMentioned byS2R: Shift2Rail PIVOT projects FS TrenitaliaExperience Comment-	Benefits Effects	S2R: Up to 12% energy savings due to weight reduction. Improved passenger comfort (improved thermal and acoustic insulation) and reduce weight for less impact on the infrastructure or train weight constraints (optimised metal solution or a plastic or composite solution) FS: Reduced traction energy consumption by train-kilometre and
Ease of implementation According to the specific improvement for lighter components or capacity upgrades, and rolling stock flexibility to adjustments. Otherwise through the purchase of new rolling stock. Constraints, challenges or lessons learnt Existing rolling stock flexibility S/M/L term Short/medium/long term according to component maintainability/modularity. Medium/long term for rolling stock heavy refurbishment or procurement. Efficiency Cost over effects: Medium, good payback over time S2R: Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Door leaves: Solutions available. Mainly applicable to regional / commuter rolling stock market worldwide and extended to tramways, metros and up to very high speed trains market Maturity Lightweight axle: Freight market in test period and subsequently metro application, available after 2023. Applicable to the whole rail market Light running gear: Solution ready for prototype testing. Applicable mainly to high-speed rail FS: High maturity Mentioned by S2R: Shift2Rail PIVOT projects FS Trenitalia Experience -	Effects (CO ₂)	According to electricity production mix for a reduction of traction energy consumption due to lighter and higher capacity train (lower impact by passenger or tonne kilometre). Reduced
challenges or lessons learnt Existing rolling stock flexibility S/M/L term Short/medium/long term according to component maintainability/modularity. Medium/long term for rolling stock heavy refurbishment or procurement. Efficiency Cost over effects: Medium, good payback over time S2R: Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Door leaves: Solutions available. Mainly applicable to regional / commuter rolling stock market worldwide and extended to tramways, metros and up to very high speed trains market Maturity Lightrweight axle: Freight market in test period and subsequently metro application, available after 2023. Applicable to the whole rail market Mentioned by S2R: Shift2Rail PIVOT projects FS Trenitalia Experience -	Ease of implementation	capacity upgrades, and rolling stock flexibility to adjustments.
S/M/L term maintainability/modularity. Medium/long term for rolling stock heavy refurbishment or procurement. Efficiency Cost over effects: Medium, good payback over time S2R: Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Door leaves: Solutions available. Mainly applicable to regional / commuter rolling stock market worldwide and extended to tramways, metros and up to very high speed trains market Lightweight axle: Freight market in test period and subsequently metro application, available after 2023. Applicable to the whole rail market Light running gear: Solution ready for prototype testing. Applicable mainly to high-speed rail FS: High maturity Mentioned by Experience - 	Constraints, challenges or lessons learnt	Existing rolling stock flexibility
Efficiency Cost over effects: Medium, good payback over time S2R: Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Door leaves: Solutions available. Mainly applicable to regional / commuter rolling stock market worldwide and extended to tramways, metros and up to very high speed trains market Lightweight axle: Freight market in test period and subsequently metro application, available after 2023. Applicable to the whole rail market Light running gear: Solution ready for prototype testing. Applicable mainly to high-speed rail FS: High maturity Mentioned by S2R: Shift2Rail PIVOT projects FS Trenitalia Experience -	S/M/L term	maintainability/modularity. Medium/long term for rolling stock heavy refurbishment or
S2R: Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Door leaves: Solutions available. Mainly applicable to regional / commuter rolling stock market worldwide and extended to tramways, metros and up to very high speed trains market Maturity Lightweight axle: Freight market in test period and subsequently metro application, available after 2023. Applicable to the whole rail market Light running gear: Solution ready for prototype testing. Applicable mainly to high-speed rail FS: High maturity Mentioned by Experience -	Efficiency	
Mentioned by FS Trenitalia Experience - Comment -	Maturity	 S2R: Light car body: Solutions ready for prototype testing. Applicable to metro/regional/high speed transport. Door leaves: Solutions available. Mainly applicable to regional / commuter rolling stock market worldwide and extended to tramways, metros and up to very high speed trains market Lightweight axle: Freight market in test period and subsequently metro application, available after 2023. Applicable to the whole rail market Light running gear: Solution ready for prototype testing. Applicable mainly to high-speed rail FS: High maturity
Comment -	Mentioned by	
Comment -	Experience	-
 https://projects.shift2rail.org/s2r_ip1_n_aspx?p=pivot 	Comment	-
	 https://pro 	jects.shift2rail.org/s2r ip1 n.aspx?p=pivot

https://projects.shift2rail.org/s2r_ip1_n.aspx?p=pivot2

58

5.1.13. High-speed motor on wheel

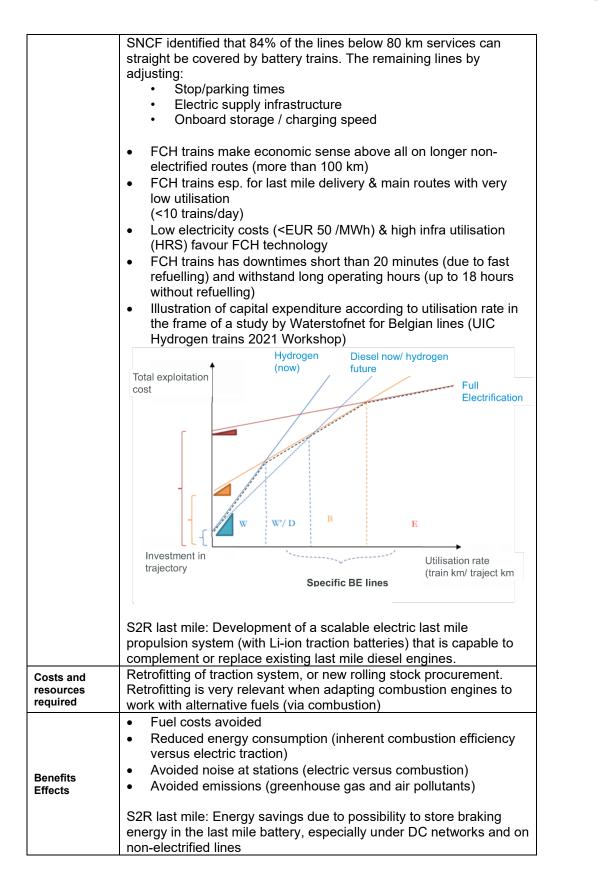
Level	Innovation	Ease/rapidity/aff.	Benefits
	High	Low	High
Special note	Inventive solution		

Field	Lligh an addition systems
Field	High speed traction systems
Solution	 Distributed traction on independent wheel bogie to increase traction capabilities Permanent magnet motor with high power and torque density (in terms of weight and volume) Inclusion of permanent magnet motor to increase traction capabilities
Description	Induction motors may be replaced by synchronous motors with permanent magnets. They have higher energy efficiency, but they require a separate converter for each motor. Permanent magnet synchronous motors may be directly connected to the wheels; hence no gearbox is required. This reduces the vehicle weight and energy usage. The disadvantage is that the motor weight and volume is increased due to the lower rotating speed.
Objective	Lighter and more efficient traction systems thanks to high-speed motor on wheel
How to	-
Costs and resources required	-
Benefits Effects	Reduced life cycle cost thanks to lower maintenance (up to - 15%) and energy costs (up to -20%) and capital cost reduction via virtual validation & certification
Effects (CO ₂)	-
Ease of implementation	For new rolling stock.
Constraints, challenges, or lessons learnt	-
S/M/L term	Short/medium term
Efficiency	-
Maturity	Solutions ready for prototype testing High-speed trains and very high-speed train markets Applicable for all train segments
Mentioned by	Shift2Rail PINTA projects
Experience	-
Comment	-
https://pro	jects.shift2rail.org/s2r ip1 n.aspx?p=PINTA

https://projects.shift2rail.org/s2r_ip1_n.aspx?p=PINTA https://projects.shift2rail.org/s2r_ip1_n.aspx?p=PINTA2

•

https://projects.shift2rail.org/s2r_ip1_n.aspx?p=PINTA3 •


5.1.14. Alternative traction systems, onboard energy storage & last mile

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Low	High
Special note	Inventive solution		

Field	Traction system and hybridisation
	Battery powered trains & partial electrification
	 Hydrogen fuel cells (FCH) powered trains
	 Dual mode/bi-mode (Diesel/battery)
Solution	 S2R: Last mile propulsion system
	 Hydrotreated vegetable oil (HVO)
	Hydrogen (Ammonia combustion)
	Liquefied/compressed natural gas (LNG, CNG)
	For operations on non-electrified lines of less than 100 kilometres, it is now possible to use battery trains or hybrid diesel/battery trains. Hydrogen powered trains and alternative fuels can answer the need for longer distance coverage, and shorter down-times (due to avoided charging time) S2R last mile: Since the core freight network is electrified, electrical
Description	freight locomotives are used for more than 90% of the rail freight traffic. But for many small terminals the "last mile" to the terminal is not electrified. This requires the provision of diesel locomotives for the last mile and requires time and staff for locomotive change. Even large terminals require diesel traction within the terminal, since within the loading area of the terminals overhead lines are not possible. Future main line locomotives will be equipped with batteries for the traction power for the last mile.
Objective	Implementation and use of more efficient and less emissive traction/propulsion systems
How to	Since non-electrified lines usually host low frequency operations, battery powered trains are an optimal answer to the need to reduce fuel consumption costs and avoid emissions (Trains can take their time to charge). For greater distance or more energy intense transport (freight), alternative fuels can be looked into according to the possibility to retrofit existing (diesel locomotives) fleets, or if procurement of rolling stock is to be planned. Battery trains allow flexibility in the electrification scheme: Avoid difficult/expensive (re-)electrification (tunnels/turnouts) → Better for punctuality and maintenance costs Less power demand on weak spots of the network/public grid → Less investment needed just for one rush hour train per day Possibility to run through earthed route sections → Less impact of work possessions/detours Possibility to avoid non-profitable re-electrifications Extend grid storage capacity for regenerated electricity that can't be immediately spent
	With a proper onboard storage and electrification scaling, a lot of non-electrified lines could be covered by battery trains.

	Three times more peak power compared to diesel "last mile"		
	propulsion		
Effects (CO ₂)	Avoided diesel related greenhouse gas emission (around 3.8 gCO2e per gram of diesel burnt (EN 16258))		
Ease of implementatio	Depending on retrofit options according to use cases, and rolling stock flexibility to adjustments.		
n	Otherwise through the purchase of new rolling stock.		
Constraints,	Studies to be made by route use case.		
challenges, or	Alternatives still are missing design standards, preventing some		
lessons learnt	companies to adopt at this stage.		
S/M/L to me	Medium/long term		
S/M/L term	S2R: Medium term		
Efficiency	According to fuel costs avoided, and to evolution costs.		
	According to battery storage technology and evolving market. Battery packs for the automotive market are more and more		
	accessible and safe/reliable.		
	Alternative fuels are well spread in some countries: HVO in		
	Germany, LNG/CNG in Russia. Solutions have to be explored		
	according to fuel production context.		
Maturity	HVO can be produced from waste and there is already good		
-	experience for its use.		
	COD last miles Calution and at data have a durby 2005		
S2R last mile: Solution expected to be ready by 2025.			
Mainly applicable to freight market, running into non electrified			
yards, harbours, but also passenger trains market running on non-			
electrified lines (diesel) with the need to enter sensitive areas, like			
	underground stations.		
Mentioned by	Alstom, ProRail, Siemens, SNCF, T&M, TUC Rail, Waterstofnet		
Experience	Alstom, ADD, ProRail, RSSB, SNCF, Stadler, TUC Rail		
_	Decision to switch to a specific traction system is to be made		
Comment	according to each use case, and in views of the long-term		
	greenhouse gas emission-free operation objective		
 <u>https://</u> 	/projects.shift2rail.org/s2r ip5 n.aspx?p=FFL4E		
	/projects.shift2rail.org/s2r ip5 n.aspx?p=FR8RAIL		
 <u>https://</u> 	/projects.shift2rail.org/s2r ip5 n.aspx?p=FR8RAIL%20ii		
• <u>https://</u>	/projects.shift2rail.org/s2r_ip5_n.aspx?p=FR8RAIL%20iii		
	/projects.shift2rail.org/s2r_ip5_n.aspx?p=FR8RAIL%20iv		
• <u>https://</u>	alternative-fuels-observatory.ec.europa.eu/transport-mode/rail		
• <u>https://</u>	storymaps.arcgis.com/stories/f399355bad724c558ac48a22b99b49b5		
	dragon traine" and "Pattony traine" workshops, 2021		

- UIC "Hydrogen trains" and "Battery trains" workshops, 2021
 - <u>https://uic.org/events/hydrogen-trains</u>
 - <u>https://uic.org/events/battery-trains</u>

5.2. Operations

This section introduces a set of solutions for improving all aspects of train operations (software or management based). As with section 5.1, solutions were shared among the members of the UIC Energy Saving Taskforce, complemented by existing UIC documentation or external studies.

Aside from the solutions given by the UIC Energy Saving Taskforce, this section also gives the common principles for energy efficient operations.

For traction energy saving and operational efficiency:

- Train-run profile optimisation Identifying the best running profiles according to the rolling stock's specific characteristics, alignment, objective and running time, adapted into ecodriving/Driving Advisory System (DAS) strategies
- Eco-driving/DAS/ATO and eco-stabling See 5.2.2 Eco-driving – saving traction energy, 5.2.3 Driving assistance tools, Driving Advisory Systems (DAS) and Automatic Train Operation (ERTMS/ATO) and 5.2.9 Eco-stabling, eco-parking
- Power management and timetable optimisation *The optimal timetable design can reduce energy consumption without additional costs, by optimising energy exchange between running and braking trains which makes this measure one of the best methods to reduce energy consumption.*

This measure relies on:

- Optimising the train runs in terms of timetabling, collaborating with IM traffic management (margins of regularity according to an ecodriving strategy)
- Synchronisation between braking and running trains
- Desynchronisation between running trains
- Desynchronisation between braking trains

• Maximise the train payload

Maximise the payload, increase occupancy for passenger trains and tons carried for freight trains, will imply a lower consumption per passengerkilometre or ton-kilometre.

The average payload factor in railway operation shall be addressed using marketing strategies and more flexible vehicle concepts allowing the train length to be adjusted to variations in demand

Naturally, an optimal occupancy rate has to be considered for passenger comfort to maintain its appeal, by balancing occupancy, train size and frequency (see 5.2.7 Fine tuning train services)

• Passenger comfort and information energy controls

Of course, as with many other large companies, railways also have energy consumption in other areas, such as road vehicle fleets.

Overview of operational improvements to rolling stock

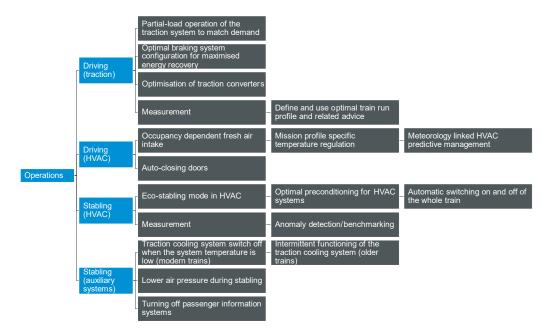


Figure 28: Overview of rolling stock software optimisation solutions as an outcome of the rolling stock and operations session of the UIC Energy Saving workshop

Some of the solutions are the software performance tuning (Figure 28) solutions of previously mentioned rolling stock hardware (upgrades) and are therefore not repeated in the *Operations* section.

5.2.1. Using the most efficient trains for operations

	Innovation	Ease/rapidity/aff.	Benefits
Level	Low	High/Medium	High

Special note

More sharing needed

Field	Electric or a newer/more efficient fleet		
Solution	Make use of the most efficient rolling stock (depending on the availability of the fleet)		
Description	 The decision to pick one type of rolling stock over another can be based on: Traction type (known inherent efficiency) according to the infrastructure Known efficiency of a specific electric rolling stock (energy consumption data, see 0) 		

k
or
n se

5.2.2. Eco-driving – saving traction energy

Note: Eco-driving is considered here to be managing driving behaviour without tool considerations (with guidelines, incentives or rules), to avoid overlapping with the details of DAS and the different grades of automation solutions.

	Innovation	Ease/rapidity/aff.	Benefits
Level	Low	High	High
Field	Train operation		
Solution	 SNCF Voyageurs: Reducing the energy used for the train traction by giving appropriate instructions to drivers Trenitalia: Drivers training to eco-drive with specific driving courses SBB: Reducing train speed in tunnels 		
Description	 Reducing energy used for traction (acceleration and braking adapted to the line profile) In general: A proper coasting strategy (instead of using the highest braking capacity at the end, will save traction energy. As stated in Figure 12, mechanical energy (grey arrows) for train propulsion has a high impact on the overall energy consumption of the system. Also as stated in <i>5.1.9</i> for 		

	 Aerodynamic efficiency of rolling stock of rolling stock, the basic Davis Equation for vehicles also applies for movement resistance, and clearly shows the impact of increasing velocity on energy needs: Movement Resistance = A + B * v + C * v^2 If feasible and compatible with general service requirements, reducing speed can lead to high levels of energy saving Trenitalia: Eco-driving on all services (particularly on the 3kV network). Courses to make the drivers aware of economic driving and the use of electric braking approaching the stations SBB: Since October 2022, the speed in the Gotthard Base Tunnel has been reduced, but only if a train is on time. Since certain time margins are built into the timetable, the speed reduction will not cause delays
Objective	Reduce traction energy consumption generally and through driver training
How to	 Identify better speed profiles using a real time calculator (acceleration and braking adapted to the line profile) Providing the drivers with the relevant information or training sessions The drivers then apply an optimised speed profile, resulting in controlled traction energy use. SBB tries to achieve this with specialised communication to the train drivers (reducing energy based on the same timetables)
Costs and resources	 Costs of developing guidelines and setting up training Training courses/information for the drivers
required	Trenitalia: Training does not require much investment
Benefits Effects	 Energy: SNCF: aiming to reduce traction energy consumption by up to 10% thanks to eco-driving, (contributing to a -10% reduction overall) Trenitalia: ~1% reduction in energy consumption SBB: 2GWh/year saving for the speed reduction in the Gotthard Base Tunnel (0.01% over 2021's traction energy consumption)
Effects (CO ₂)	According to electricity production mix for a reduction of traction energy consumption. Reduced exhaust emissions due to the reduced tractive effort required.
Ease of implementation	 Needs: Optimised speed profiles (simulations, tests) Accurate data about infrastructure, route segments Education of the drivers Trenitalia: Easy
Constraints, challenges, or lessons learnt	Possible need for adapting timetables Education of the drivers Human factors: drivers need to follow the guidelines and/or training sessions for results
S/M/L term	Short/medium (setting up training, guidelines, communication to
	staff)

Maturity	High
Mentioned by	SNCF Voyageurs Trenitalia SBB JRE
Experience	-
Comment	-

 <u>https://www.sncf.com/fr/engagements/developpement-durable/sobrieteenergetique</u>

<u>https://www.sncf.com/sites/default/files/press_release/CP_NR_Plan-de-sobriete-energetique_10-10-2022.pdf</u>

5.2.3. Driving assistance tools, Driving Advisory Systems (DAS) and Automatic Train Operation (ERTMS/ATO)

Level	InnovationEase/rapidity/aff.BenefitsHighLowHigh
Special note	Inventive solution
Field	 Optimal train consumption during operation Next generation ERTMS
Solution	 S2R/EU-Rail: Moving to higher Grade of Automation (GoA) on ERTMS. Achieving ERTMS/ATO. Deployment and implementation of DAS/ATO, delivering driving advice to drivers or automated train control. The first phase is <i>Standalone DAS/ATO (S-DAS, S-ATO)</i>, meaning solutions without connection to Traffic Management Systems (TMS), and then <i>Connected DAS/ATO (C-DAS, C-ATO)</i> which manage conflicts and harmonise traffic flows at a system level and even allow energy efficiency to be built into system-wide train schedules SNCF: Real-time calculator for drivers to follow an optimised behaviour for each line and train use. SBB: Reduction in the energy used for train traction by giving appropriate instructions to drivers RFI: Increase train run efficiency through the implementation of ERTMS/ATO (Automatic Train Operation over ETCS) for efficient train runs Trenitalia: Implementation of an efficient driving support system SBB: Providing the driver with real-time information about the timetable and operating situation through a tablet in the driver's cab (ADL & vPRO), April 2023 PÜA (punctuality display) RENFE: Efficient driving under DAS & ATO and train protection systems, for energy savings and increased traction energy efficiency
Description	S2R / EU-Rail: The standard solution that EU-Rail is developing for mainline (both freight and passengers) applications in different Grades of Automation guarantees the interoperability and interchangeability of the subsystems (trackside and on-board)

	 delivered by different suppliers. As a second automation step trains will run automatically according to an energy-optimised driving style not depending on the individual driving style of the train driver. Therefore the energy usage is further reduced SNCF: Reducing energy used for traction (acceleration and braking adapted to the line profile) FS: Trenitalia and RFI evaluate a coordinated implementation approach for an efficient driving support system (e.g., DAS) with fleets having EMS SBB: The locomotive crew receives comprehensive information about the timetable and operating situation directly to a tablet in the driver's cab. This is the only way to achieve punctual and energy-saving driving RENFE: Implementation of advanced ERTMS systems as well as advanced communications equipment; acquisition of automatic efficient driving assistance (APP) for high-speed and conventional vehicles Data consumption analysis for decision-making Training of train drivers, both in terms of driving culture and awareness and the use of efficient driving simulators A harmonised DAS data exchange message structure (as proposed and described in I<u>RS 90940</u>) would help any company to deploy a basic set of driving assistance messages in DAS (S-DAS and C-DAS, provided that the IM sends data). It enables a message from the traffic management to trains (for operating C-DAS over multiple countries, as IMs are able to offer connections to TMS). Enabling real-time messages was proven to enhance punctuality, thus the capability of operators to focus on additional energy
Objective	 savings Reduced traction energy consumption Reduced energy losses during high levels of power demand due to synchronous traction power via DAS information to drivers (related to timetable optimisation, to reduce energy consumption and peak loads during planning and operation) To achieve punctual and energy-saving driving Avoid braking (kinetic energy loss) and use recuperation if braking cannot be avoided.
How to	 SNCF: Identify a better speed profile using a real-time calculator (acceleration and braking adapted to the line profile and traffic) Providing the drivers with this information The drivers then apply an optimised speed profile, resulting in controlled traction energy use Trenitalia: Progressive extension on all trains (given the cost and impact on train stops, to be carried out with a programme spread over at least 5 years); first train ETR1000 + Consumption Monitoring Dashboard: progressive implementation on main DBR (regional trains) fleet SBB:

	 Since 2016, the locomotive crew has directly received driving recommendations from the Rail Control System in the event of deviations from the plan, which largely prevents stops before red signals Optimised driving profile vPRO Since 2020, an optimised journey profile has been calculated for passenger trains shortly before departure based on the latest information on rolling stock, road works and routes. In addition to vPRO, from April 2023, real-time PÜA (=punctuality display). Updated driving situations With this function, freight locomotive crews receive a quasi-live view of the dispatcher's screen and therefore know about the train's current situation. RENFE: New equipment and development of applications for efficient driving assistance (APP) for high-speed and conventional vehicles Data consumption analysis for decision-making Training of train drivers, both in terms of driving culture and awareness and the use of efficient driving simulators Deploy a basic set of driving assistance messages in DAS (S-DAS and C-DAS, provided that the IM sends data) using a harmonised DAS data exchange message structure, as proposed and described
	in IRS 90940, helps any company (DAS provider, IM and RU) to
	achieve traction energy saving through sober driving.
Costs and resources required	 SNCF: Costs related to investing in and maintaining the calculator Costs related to giving information to the drivers KPI management RENFE: Costs of driver training Costs for automatic efficient driving equipment Costs for developing apps to help efficient driving (APP) Cost of data collection and processing
Benefits Effects	 Energy: S2R/EU-Rail: Energy savings of up to 45% through optimised speed profiles SNCF: Aiming to reduce energy consumption by up to 10% Trenitalia: Potential savings ~10% of the total consumption for electric traction SBB: Approx. 25% (130GWh/year) savings, from adaptive steering (70GWh/year), the optimised driving profile vPRO (50GWh/year) and updated driving situations (10GWh/year) DB Cargo & Knorr Bremse: 6% reduction in energy consumption since 2018 (proven and confirmed by DB Cargo as well as the German Federal Ministry for Economic Affairs and Climate Action) over a fleet size of 650 freight locomotives in permanent operation, with a DAS providing live traffic information – the next train behind and in front are shown to the driver (refer to DB's green functions). The next step is to have

	 active management/reduce traffic conflicts to realise more regenerative braking and/or coasting potential. RENFE: Potential savings of on average 8-10%, across high-speed, commuter, and freight trains UIC: Average potential savings on a system level of between 5% and 10% for S-DAS/ATO without TMS connection, between 8% and 12% for C-DAS/ATO, and above 10% for solutions which manage conflicts and harmonise traffic flows at a system level and even allow for energy efficiency to be built into system-wide train schedules (UIC OPEUS D4.1). Aside from enhancing punctuality and thereby operational efficiency, thanks to a harmonised DAS data exchange message structure: RUs can choose their preferred DAS products and increase their energy savings IMs can offer a single interface to all RUs regardless of the DAS supplier Migration between products (e.g. to other train protection systems or to other ATO systems) is facilitated RUs and IMs ensure higher consistency and compatibility for the solutions that they invest in Note: DAS can help achieve ATO benefits earlier, hence the similar expected improvements. ATO would make it perfectly reliable but DAS can already help achieve optimal driving profiles.
Effects (CO ₂)	of the harmonised data structure. DB Cargo & Knorr Bremse: Between 5 and 12% (depending on the type of DAS) of traction energy correlate to potential reduction in CO ₂ emissions. The type of energy production (renewable energy/forsil) determines the potential CO ₂ savings
Ease of implementation	 energy/fossil) determines the potential CO₂ savings. SNCF requirements: Optimised speed profiles (simulations, tests) Accurate data about infrastructure, route segments Drivers education DB Cargo & Knorr Bremse: Accurate and accessible data on infrastructure, topography and ideally energy metering systems is needed Educating drivers is the initial step, but an intuitive and valuable system that really supports the driver is a key for successful implementation
Constraints, challenges or lessons learnt	 Implementation of C-DAS is dependent on a country's infrastructure manager's capacity to handle the IM-side delivery of harmonised/standard (DAS) messages to operators Drivers' adaptation to and acceptance of the new tool/digital system SNCF: Education of the drivers Human factor: convince the drivers to use the tool RENFE:

	Training of drivers
	 Training of drivers Driving culture and awareness of drivers
	Oriving culture and awareness of drivers S2R/EU-Rail: Medium/long term
	Short/medium for S-DAS: already available
	Short/medium/long for C-DAS (according to the S-DAS and data
	exchange readiness in each country – for example, already partially
S/M/L term	available in Germany/Switzerland, so shorter term to deployment)
	Long term for ATO
	RFI: Medium/long term implementation (due to the length of the
	development and implementation phases)
	RENFE: medium-term for DAS and long-term for ATO
	High: accurate reduction of delayed or early trains, hence train
Efficiency	consumption accurately adapted to train run needs
	S2R/EU-Rail:
	 Good implementation perspectives for all types of trains
	(mainline/high speed, urban/suburban, regional and
	freight lines)
	• ATO GoA2: solution ready
	 ATO GoA3/4: ready for prototype testing from 2023
	S-DAS: Mature
Maturity	C-DAS: Mature/pilot projects/deployment projects
	ATO: Prototype/pilot projects
	SNCF: 80% mature
	SBB: 90% mature for DAS (incl. infrastructure timetable
	information, not live but uploaded before driving) and live
	information about punctuality according to the
	operating/dispatcher's timetable.
	RENFE: DAS mature, ATO innovation projects (participating in
	ERJU)
	Shift2Rail X2RAIL projects
	SNCF Voyageurs
Mentioned by	FSRENFE Viajeros
	• RENE Viajeros SFERA WG (Bane NOR, DB, Infrabel, NS, ÖBB, ProRail, SBB,
	SPERA WG (balle NOR, DB, illiabel, NS, OBB, PloRall, SBB, SNCB/NMBS, SNCF, Trafikverket)
	SBB, DB Cargo, SNCF, NS, ProRail, SNCB, Infrabel, ÖBB,
	Trafikverket (All part of the UIC SFERA Working Group)
Experience	RENFE Viajeros (on-going energy management programme,
	started 2019, for S102, S112 and S130 for two Spanish lines)
	SNCF: Possible need for adapting timetables. Next step
	connected DAS
•	• SBB: vPRO
Comment	 UNIFE: It helps to show the driver the topography ahead so that
	the driver can anticipate up/downhills and can adapt
	speed/traction accordingly
https://proj	jects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-1_
	jects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
	jects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3

- <u>https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3</u>
- <u>https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-4</u>
- https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-5
- https://bahninfrastruktur.sbb.ch/de/digitale-bahn/optimiertes-fahrprofil-vpro.html

 <u>UIC IRS 90940: Digitalisation, Data, Emerging Innovations - Exchange of Data -</u> Data exchange with Driver Advisory Systems (DAS) following the SFERA protocol

5.2.4. Partial equipment usage: adaptation of equipment use according to load/needs

	Innovation	Ease/rapidity/aff.	Benefits	
Level	Medium	High	High	
	On time of an annual and			
Field		umption for operations engines according to loa	ad (partial switch-off	
Solution	when coasting) • SBB: Step-by-ste	ep introduction of partial-l	ŭ	
Description	 SBB: To protect the SBB locomotive 2000 (class Re 460) intermediate gear bearings in the gearboxes from excessive wear, the two bogies of the locomotive have so far been tensioned against each other in terms of tractive force. The same challenge was also encountered with BLS's Re 465, where burnished bearings were eventually used as a solution. For several years now, SBB's Re 460 has also been fitted with burnished bearings, so that the mechanical prerequisites for partial-load operations have now been fulfilled. Trials with the bogie tension removed (a preliminary stage to partial-load operation) were carried out on the Re 460 and successfully completed. In autumn 2019, as part of the project "Pilot operation Re 460 Partial load operation," the first three prototypes were equipped with partial-load operation, and have been in regular operation since. Inspections of the critical intermediate gear bearings in the gearbox are carried out at specified intervals. The proof of the activation frequency of the partial-load operation, in relation to distance and running time, confirms the expected values of 16%. A final assessment of the bearings has to be carried out, but this must wait until the full mileage is reached in summer 2023. Until then, the prototypes will continue to be monitored to detect potential long-term damage. 			
Objective	The primary aim of partial-load operation is to save energy by switching off drive trains at lower tractive forces and allowing the remaining drive trains to apply the required tractive force.			
How to	 By switching off motors, inverters, and drive losses can thus be reduced, while the active motors and inverters are operated at a better efficiency range. SBB: For Re 460, two drive trains of a common bogie are controlled in a so-called group drive, i.e. in partial-load operation, both drive trains of a bogie are switched off. 			
Costs and resources required	evidence of energy s	The cost-effectiveness of partial-load operation is backed up with evidence of energy savings.		
Benefits Effects	Energy consumption energy:	data proves that partial-l	oad operation saves	

	 SBB: Partial load operation reduces the energy consumption of the Re 460 by 1.5% or 5GWh per year, extrapolated for the entire fleet.
Effects (CO ₂)	-
Ease of implementation	
Constraints, challenges, or lessons learnt	 SBB: After 250,000km in test operation (approx. a quarter of the regular mileage for bearings) signs of wear were noticed on the bearings, which can be attributed to the more frequent load changes from partial-load operation. However, these were so small that three more vehicles were added to the trial operation in spring 2021 to obtain more data for the project.
S/M/L term	
Efficiency	
Maturity	 SBB: The first prototypes have been equipped. Partial-load operation has already been installed as a software option on all Re 460s and can be quickly activated by software after a positive decision.
Mentioned by	SBB, S2R FINE1 OPEUS
Experience	• SBB: From a technical point of view, Re 460 partial-load operation will function as specified and will also be activated with the expected frequency on the locomotive. The bearing findings and the current course of trial operation have not revealed any critical factors that would stand in the way of a rollout to the entire fleet.
Comment	
https://www	v.bav.admin.ch/dam/bav/de/dokumente/themen/umwelt/energiestrate
gie-projekte	:/schlussbericht-
	·

p136.pdf.download.pdf/136_SBB_Schlussbericht_Teillast_Re460.pdf

<u>https://opeus-project.eu/#Deliverables</u>

5.2.5. Optimisation of power electronics

	Innovation	Ease/rapidity	Benefits
Level	Medium	High	High

Special note More sharing needed

Field	Increase the efficiency of train traction systems
Solution	Fine-tune parameters for the maximum efficiency of onboard power electronics (Douglas et al., 2015)
Description	A proper software control of equipment can result in a more efficient management of energy flows through the traction system
Objective	Reduce traction energy consumption
How to	Power electronics are typically computer controlled, and by modifying the set points of various parameters, such as the DC link voltage or magnetic flux (Douglas et al., 2015) Assessing effects of adjusted settings is made easier with an energy measurement system

	Another approach is to vary the traction demand depending on the operating conditions, and even switch off if demand allows it (5.2.4 Partial equipment usage: adaptation of equipment use according to load/needs)
Costs and resources required	Time to assess effects of various software settings.
Benefits Effects	Energy: Savings of between 1% and 3% are achievable (Douglas et al., 2015)
Effects (CO ₂)	According to electricity production mix for a reduction of traction energy consumption.
Ease of implementation	Easy
Constraints, challenges, or lessons learnt	An improper setting can result in an increased consumption
S/M/L term	Short
Efficiency	(Cost over effect)
Maturity	Medium
Mentioned by	(Douglas et al., 2015)
Experience	-
Comment	-

5.2.6. Using energy measurement data

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	Medium	High
Special note	Inventive solution		

Field	Energy consumption data
Solution	 When an energy measurement system (EMS) is available for a traction unit (TU), data can be used to: Analyse, create, and validate consumption models Define optimised train runs based on actual consumption Compare rolling stock efficiency Compare driving efficiency Exact energy settlement Evaluate energy saving measures, eg: evaluate the efficiency of driving assistance tools and features More efficient cross-border activity (less stops at borders) with a more efficient energy settlement process (see challenge 7.2 International traffic). Renfe: Central onboard measurement device for all energy measurement systems on all electric traction units that comply with EN 50463:2017
Description	The data output from an EMS is valuable for analysing a train run's driving efficiency. Whether it is to improve the eco-driving strategy (specific to a route or not), or enhance driving advice for a DAS. Exact optimal energy consumption and punctuality can be found by analysing data from multiple train runs.

Objective	Learn from data and find energy saving driving patterns
How to	Implementation of energy measurement systems in undergoing across European operators. Energy measurement data will more and more be collected by the settlement services of each settlement area, and it will enable more efficient energy consumption benchmarking and international operation (More information in the sector declaration <u>https://www.cer.be/cer-</u> <u>agreements-resolutions/eu-rail-sector-declaration-on-traction-</u> energy-metering-and-settlement)
Costs and resources required	Fleets upgrading with energy measurement systems or new rolling stock. Proper data collection and data exchange setups for the settlement services.
Benefits Effects	Energy: Data analysis indirectly helps identifying saving potential in train runs or parking/stabling states
Effects (CO ₂)	Footprint: N/A
Ease of implementation	Medium
Constraints, challenges or lessons learnt	 Long term implementation: Rolling stock lifespan and compatibility Energy measurement systems certification
S/M/L term	Long term
Efficiency	(Cost over effect)
Maturity	High
Mentioned by	RENFE (EMS deployment, monitoring and consecutive power management) UIC Traction energy settlement WG – IRS 90930 Maintenance members: ADIF, Bane NOR, DB, FS, FTIA, Infrabel, MÁV, NS, ÖBB, PKP, ProRail, SBB, RTE, SNCB/NMBS, SNCF, SZCZ, Trafikverket
Experience	-
Comment	-

5.2.7. Fine tuning train services

	Innovation	Ease/rapidity/aff.	Benefits	
Level	Low	Low	High	
Field	Train consumption in c	peration		
	Finding the optimal travel times and stopping frequency.			
Solution	ution Adjusting and reducing train services without impacting passengers, or even improving appeal			
	Optimal travel times and stopping frequency.			
	Finding the right balance between:			
Description	Train frequency			
	Train size			
	Stops			
Objective	Reduce energy losses due to the train's weight, speed and			
Objective	stopping frequency	-		

How to	 Asynchronous train acceleration to avoid energy use during peak hours and reduce losses (timetabling, power management) A train's acceleration synchronised with another train's braking (timetabling, power management) ATO and DAS for the most efficient traction energy use, avoid train stops using information from traffic management See 5.2.3 Driving assistance tools (DAS & ATO) After thorough analysis of passenger flows and demand: Adjust the number of coaches/wagons during off-peak hours to the expected attendance/load Run more frequent shorter trains to increase service frequency, instead of less frequent longer trains (more attractive to passengers) Reduce the number of stops, by skipping (low attendance) stations for frequently stopping trains (faster trains over long distances are more attractive to passengers) Develop a "request stop" system
Costs and resources required	Analysing and setting up time and costs
Benefits Effects	Traction energy savingTrain service appeal
Effects (CO ₂)	-
Ease of implementation	Related to transport demand at a line level and system to put in place
Constraints, challenges, or lessons learnt	Might conflict with local transport offer agreements, and contractual timetabling. The available capacity of a line/network might also limit related saving opportunities/service optimisation.
S/M/L term	Medium term
Efficiency	High (traction energy saved as soon as a stop is avoided)
Maturity	-
Mentioned by	All companies apply some or all of these principles to a certain extent [Request stop] Swiss companies and tests to be carried out in France with SNCF (Occitanie, Massif Central)
Experience	-
Comment	-
·	

5.2.8. Efficient heating, ventilation, and air conditioning (HVAC) management

Level	Innovation High	Ease/rapidity/aff. Medium	Benefits High
Field	Optimal HVAC energy	consumption for oper	rations
Solution	 Schedule and adapt HVAC strength to weather condition data/forecasts Adapt HVAC strength to CO₂ levels Adapt HVAC strength to the temperature 		

Reduce heating (comfort margin) Timetable-based provisioning time (For eco-stabling, see <i>5.2.9 Eco-stabling, eco-parking</i>) Specific to the type of rolling stock: the staff define the optimal time and strength of manual HVAC Specific to the type of rolling stock: Adjust HVAC software SBB: HVAC system management is scheduled using the weather forecast to avoid excess consumption for heating,
cooling, or ventilation
SBB: Adapt ventilation to the current needs in passenger compartments based on CO ₂ measurements. (See 5.1.7 <i>Smart/automated heating, cooling and ventilation (HVAC)</i>) Reduce the temperature in passenger compartments by 2°C (from 22°C to 20°C as new standard) While trains are stabled, heating and ventilation is reduced to a minimum (10°C). Before operation, they receive a startup
signal and are automatically heated/ventilated to be ready for passenger transport In winter, as well as in summer, ensure that doors are closed while a train is in a workshop, if they are being heated or cooled
SBB: EW IV/EC/ICN type trains: Implemented by staff according to "best efforts" during commissioning or while driving. The setting must be set again after the vehicle has been restarted RABe511/DTZ type trains: Software adaptations are being tested Flirt type trains: Use of local personnel is being tested
duce energy consumption
Link HVAC functioning levels/schedule to temperature/weather forecasts for a smart predictive adjustment of HVAC systems in trains Automatic processes related to the timetables, and educate staff
ff training, upgrade to HVAC with smart nagement/sensors, identifying best practice
SBB: With HVAC weather forecast scheduling: Around 10GWh per year for a fleet of 400 trains SBB: Defined rolling-stock specific HVAC measures can save 5000 to 800 MWh from November to February
imal due to reduction in current consumption y high in depots where numerous trains are stabled
SBB: Adapt CO ₂ based ventilation: Requires hardware and software updates in all coaches Reduce carriage temperature by 2°C: Simple - give as an order to the train crew Timetable-based commissioning times: Development and implementation of a system linking the

Constraints, challenges or lessons learnt	Staff education Cost of implementation of new technology
S/M/L term	Short for manual management and rolling stock already equipped with smart HVAC
Efficiency	-
Maturity	SBB: CO ₂ adapted ventilation and FVV are fully developed and deployed. Reduced heating is in development. Customer surveys are ongoing
Mentioned by	SBB
Experience	-
Comment	-

5.2.9. Eco-stabling, eco-parking

	Innovation	Ease/rapidity/a	aff. Benefits		
Level	High	High	High		
Field	Train consumption	n at a standstill			
	SNCF: Reduce	e train energy consur	mption when standing still		
	 Trenitalia: Sw 	itching off trains in de	pots, optimal pre-HVAC		
Solution	time. Smart pa	arking through three o	different phases		
			er rolling stock/switching		
		energy-optimised ma			
			uired at a specific instant,		
	manually or auton				
			(hibernation) state of a		
		reduce energy const			
		ctive cooling of the m			
	compressed air generation for pantographs, etc., are still				
	working). Electric rolling stock is still connected to the power grid				
		Eco-stabling: Parked train with minimal energy consumption. Electric trains are disconnected from the catenary.			
	UIC: Overview based on surveys and workshops:				
	consumption and commissioning times)				
			ection using energy meter		
Description	data				
	 Engin 	Engine switch-offs or partial switch-offs and idle			
	mode				
		· · · · · · · · · · · · · · · · · · ·			
	 Partially switching on or switching off lighting for maintenance 				
			inmont and automatic idla		
	o Smar mode		ipment and automatic-idle		
			tion of rolling stock		
		ed body and window			
		or heat protection/vel			

	 Organising and making staff aware of energy saving
	measures via communication
	 (monitoring/data/reporting) and incentives NS:
	 NS: Automatic and remote control with EZO mode
	(Hibernation mode after idle for 60 minutes)
	 Consumption monitoring using energy meter data
	 Optimal temperature management: HVAC
	management for low consumption, maintaining
	temperatures and short pre-heating times
	SNCF: Optimising energy consumption related to stabled
	trains by stopping the engines or reducing consumption to
	the minimum possible. Reduce the energy used by stabled
	trains by:
	 Using technical systems that automatically control
	traction, cooling, heating, auxiliary, lighting and door
	opening and closing systems
	 Changing the way people perform their duties
	(manually stopping and restarting engines)
	• Trenitalia: Reduce the preheating/air conditioning phases,
	agreed upon with RFI, and for stabling hours, ensure that
	trains in depots are switched off
	Smart stabling automatically sets 3 stabling phases
	depending on requirements:
	Phase 1 – Sufficient lighting to allow cleaning Phase 2 – Only the control units are powered on
	Phase 3 – Before service when the air conditioning/heating is
	switched on
	SBB:
	 In passenger traffic, trains are in operation for
	between 8 hours (regional traffic) and 12 hours (long-
	distance traffic) daily and are stabled for the rest of
	the time. All passenger rolling stock now has a
	hibernation mode, or is switched off in an energy-
	optimised manner
	 Some trains have a "start & stop" system so that they
	shut off after entering an idle mode
	 Some trains are equipped with a hibernation system
	that have an automated shut-down for trains at the
	end of operation
	 Traction cooling systems are shut down
	 Some trains are capable of partially switching off
	equipment
Objective	Reduce energy used by stabled trains/save energy on heating
Objective	Decrease energy consumption by ensuring that rolling stock
	shuts down when in a depot The vehicle control system automatically calculates the
	necessary preparation time based on the time and the data
	וופטבאאו א אובאאומוטון ווווב אאצבע טון נווב נוווב אוע נווב עמנמ
	available on the vehicle
How to	available on the vehicle In general, for optimal eco-stabling:
How to	available on the vehicle In general, for optimal eco-stabling: The main switch is open, and the pantograph is lowered. The
How to	available on the vehicle In general, for optimal eco-stabling:

	 for minimal monitoring remain switched on. If an anomaly is detected, the vehicle automatically switches itself on to normalise the monitored systems. The vehicle automatically switches back to eco-stabling when all the necessary conditions have been met When a wake-up command is received, the vehicle automatically switches itself on and switches to eco-parking SNCF: Defining the rules to apply locally and by rolling stock type. Providing staff with the relevant instructions for the stabled trains. Technical devices that automatically control traction, cooling, heating, auxiliary, lighting and door opening and closing systems Trenitalia: Reducing the energy consumption of stabled rolling stock with a qualified operator (not necessarily a train driver) manually carrying out this 1-2-3 phase sequence and considering switching off the train completely in phase 2 on fleets where smart stabling is not present. RFI switches on the smart-stabling function according tothe network information prospectus (PIR) for trains that are already equipped with the smart stabling method (e.g. Rock) 	
	shutdown signal in the combination "v < 5km, heating switches to hil temperature of 10°C. o Energy-optimised stat	Smart Parking mode Automatic Automatic Manual Automatic e vehicles recognise the e control system with the /h" and "light off > 30 min": The bernation mode with an inside pling: The wagon heaters times directly from the vehicle
Costs and resources	 schedule via the vehicle vehicle can be "woker mode can be activated SNCF: Establish a set of instruction for trains at a st Educate staff (drivers, maintai Invest in technical hibernation 	cle's control system so that the n up" in time, or hibernation ductions to be adapted to each andstill ners, cleaning staff,) systems and implementation
required Benefits Effects	 work ((studies and tests, deplo KPI management Trenitalia: No investment need Energy saving Noise reduction Power management SNCF: Aim for an up to 15% r consumption 	led

	Tranitalia: 20% reduction in operaty consumption for 2024		
	• Trenitalia: 20% reduction in energy consumption for 2024 (with the trains in depot strategy)		
	Potential savings of about 30-40% solely due to the fleets		
	being equipped with smart stabling		
	 SBB: 61GWh/year savings (50GWh/year with hibernation 		
	mode and 10GWh/year with energy-optimised stabling		
Effects (CO2)			
	Trenitalia: Easy		
	SNCF: Needs		
	Clear instructions for the crew		
Ease of implementation	 Education of the stakeholders 		
implementation	Design and installation work for technical hibernation		
	systems (studies and tests, deployment of the		
	modifications)		
Constraints,	Education of the drivers		
challenges or lessons learnt	Human factor: convince the drivers to use the tool		
S/M/L term	Medium-term		
Efficiency	(Cost over effect)		
Maturity	Pilot projects for optimal eco-stabling		
Maturity	SBB: 60%		
	SBB		
Mentioned by	SNCF Voyageurs		
	NS		
Experience	-		
	Time required to ready a train should not be underestimated,		
0	especially when a train is in hibernation mode or energy-		
	optimised stabling. Some systems which were off need to		
Comment	start/reboot and carry out a test (ETCS, BRAKE, NBU etc.).The		
	planned parking length first needs to be assessed before the		
	train is eco-parked		

5.2.10. Interval operation of traction coolant pumps during stabling

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High
Field	Optimal energy cor	nsumption during stabling	I
Solution	ventilation during e Turn off traction co stabling.	nverter coolant pumps ar	nd ventilation during
Description	of low or no losses	val operation of coolant p . Coolant pumps for tracti on, especially when oil is u	ion can have a high
Objective	Reduce the energy ventilation	consumption of coolant	pumps and
How to	coolant pumps are	o current for traction), trac regulated with interval op ents for auxiliary systems	peration according to

r	
	Use a loss function model of the traction transformer to calculate the intervals. Turn on the coolant pumps from time to time to refresh the temperature readings. The pump and ventilation could be supplied with a variable frequency converter and be operated with a minimal frequency when needed Turn off traction converter coolant pumps during stabling mode Turn off the related ventilation when the pumps are not in operation
Costs and resources required	Engineering required to design the interval calculation and measurements for the loss function model Implementation might require the installation of additional hardware, such as contactors and cables
Benefits Effects	Reduces energy consumption and the noise of pumps during stabling, increases pump service life SBB: 10 to 30MWh per year per locomotive. I.e. 30 GWh per year, which is 8% of total energy consumed by the fleet of 119 locos with 8 to 10 coaches each, running at speed up to 200 km/h.
Effects (CO2)	Depends on the primary energy mix
Ease of implementation	Medium
Constraints, challenges, or lessons learnt	Implemented on several locomotives at SBB
S/M/L term	Long-term
Efficiency	Depending on pump size and operational profile
Maturity	Mature
Mentioned by	SBB
Experience	Different projects completed
Comment	-

5.3. Infrastructure

There are two main ways in which infrastructure is implicated in energy saving:

- Traction energy: the traction power supply system generates losses of between 2% and 15% depending on the voltage system used
- Other uses: signalling, control, telecoms, and lighting all need electrical energy. Ageing systems consume a lot of power, with renewal enabling the use of energy efficient systems.

In terms of traction energy, railways and public entities, such as sustainable development agencies, emphasise that the most efficient use of energy is for electric railways. From the infrastructure to the wheels of a traction unit, energy efficiency lies at approximately 90%, depending on voltages. On the other hand, for batteries this figure is at 65%, with other means having an efficiency below 35% (including the known efficiency for any internal combustion engine).

Therefore, electrifying a system (including via battery trains) is often justified, if the project is studied with a systemic view and all aspects are taken into account over the lifetime of the future asset. Its capital expenditure (CAPEX) is high, but its operational

expenditure (OPEX) is low, as are the losses, and has a life cycle of 50 years or more with the right maintenance.

At the design phase of a project, all these aspects have to be studied in conjunction with the foreseen traffic levels and the necessary maintenance or OPEX of trainsets, whereby pure electric trainsets have better efficiency and a lower OPEX. This is why a systemic view is so important, as this way of thinking has allowed the major networks to be electrified over the last century, and the new challenges arising from climate change and the energy crisis should naturally lead the best solution in terms of energy efficiency, CAPEX, OPEX and CO_2 emissions being implemented.

New technologies such as power electronics, energy storage, and renewable energy production offer new possibilities in terms of energy management. It is now possible to:

- Link networks, even if they are not directly involved in traction or supplying infrastructure components, this reduces general losses and increases the reliability, availability, maintainability, and safety (RAMS) of the networks
- Manage energy flows from one point to another for the most efficient energy use
- Implement reversible substations for DC to return braking energy to the grid
- Adapt consumption to the available energy and avoid peak hours of demand with higher costs
- Store energy coming from:
 - Braking trains
 - Solar farms, panels, renewable intermittent production
 - Any electricity production
 - And re-use it at the best time, i.e., during peak demand, for:
 - \circ Traction
 - Supplying additional systems (escalators, lighting, control-command, etc.)
 - Supplying any external non-railway systems
- Implement high power converters in traction substations, where necessary, i.e., to:
 - Generate 16.7Hz or a particular railway traction frequency
 - Balance single phase 50Hz or 60Hz traction
 - Link parallel substations through overhead lines with converters at the end of the sections
- Use substation converters with voltage regulation (i.e., to compensate voltage losses), and monitoring (best possible maintenance and to avoid incidents)
- Improve voltage stability
- Stop the supply of energy to devices if there is no energy consumption and restart this immediately when needed: use only when required (see *5.3.5 Smart control of* power supply)
- Enhance the traction power supply system by enhancing the overhead contact line (OCL) voltage using smart rectifiers (changes from 1.5kV to 3kV) or electronic autotransformers (for DC) to adapt the autotransformer principle to DC.

The UIC Energy Saving Taskforce has shared a set of solutions to improve transmission energy efficiency and avoid excess energy consumption. The initial set of solutions was built into a mind map (Figure 29) to be referred to during the workshop, with many specific solutions being added to this section (*5.3 Infrastructure*) of the catalogue following the session.

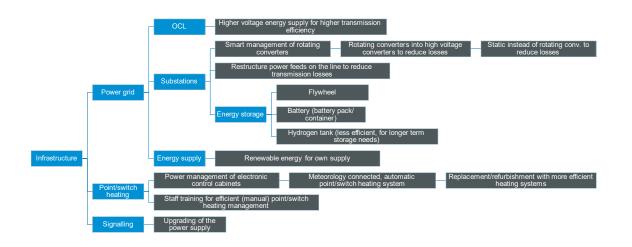


Figure 29: Infrastructure solutions map as proposed for the UIC workshop For easier understanding, the following solutions were sorted following the levels given in Figure 29.

5.3.1. Railway layout and infrastructure performance

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Low	High
Field	Track design and main		
TIERA	Optimised infrastructur	e and bridges	
	RUs & IMs to work on	track curve adjustmen	ts and gradients to
	reduce friction and mai		profile (RUs can
Solution	report to IMs about pro	blematic segments)	
	S2R: Low cost high-sp easily maintained struc	5 5	performing and
	 Maximising curves 	to avoid reducing spe	ed and decrease
Description	kinetic energy loss	es	
	Having homogene	ous speed profiles	

	Avoid having temporary speed restrictions
	Reducing gradients Following human profiles (using the station's altitude or
	Following hump profiles (using the station's altitude or artificially making the stap higher) to potentially convert
	artificially making the stop higher) to potentially convert
	energy with a descending slope for the acceleration phase,
	 and an ascending slope for the braking phase Optimised tunnel and bridge use to avoid gradients and
	Optimised tunnel and bridge use to avoid gradients and curves
	 Tunnel optimisation for reduced resistance due to pressure
	(Niu et al., 2020):
	 Lowered pressure
	 Pressure recycle duct
	 Tunnel portal
	Examples:
	 Alpine tunnels, such as the Gotthard/Lötschberg tunnels,
	which avoid trains having to climb saves a lot of energy
	 Paris-Lyon's high-speed line where trains adapt their speed
	and power consumption using the line's gradients to reduce
	power for acceleration and to avoid braking
	S2R: Low-cost high-speed bridges and long-performing
	structures aim at increasing the longevity of infrastructure before
	reaching a critical state and structures can be restored quicker
	without disturbing traffic through regulating speed and structure
	availability. Structures time of service is extended leading to cost
	and environmental savings with ensured safety
	Make traffic as smooth and fluid as possible, to improve the
	timetable and reduce traction energy consumption
Objective	Using natural and artificial topology to save traction energy
-	S2D: Doduced construction and maintenance related an arm
	S2R: Reduced construction and maintenance related energy
	Consumption
	RUs can report to IMs about problematic segments
	For new lines, working on track alignment design to maximize the surve radius, officient tunnel design and avoid
	maximise the curve radius, efficient tunnel design and avoid
How to	 frequently changing speed restrictions For existing line, the same goal stands, working on the speed
	 For existing line, the same goal stands, working on the speed profile/curves, tunnel pressurisation systems, in order to
	have smoother trajectories. To the extent that work is
	possible
	Requires extensive designing and planning
	Requires excensive designing and planning Requires work on tracks and on the ground, halting operations
Costs and	for a certain period on existing lines
resources	
required	S2R: Reduced material costs and optimised maintenance costs
	and efforts
	Energy:
	Improves the timetable and reduces traction energy consumption
	Energy reduction reported to be "high" by ProRail
Benefits Effects	
Ellects	S2R: Energy savings of up to 25% from bridges energy
Ellecis	S2R: Energy savings of up to 25% from bridges energy consumption due to reduced material usage and of at least 10 %

	Improved capacity due to reliable infrastructure and less frequent
	and shorter maintenance times.
	According to traction energy, electricity mix, according to traction
	energy savings.
Effects (CO ₂)	
	S2R: Avoided impact of civil engineering energy consumption
	due to optimised construction and maintenance profiles
	Implementation is not easy, because it requires track adjustment,
Ease of	so a long period without operation
implementation	
	S2R: Works on infrastructure if applicable
Constraints,	
challenges or lessons learnt	Adjustment/redesign prevents operations
S/M/L term	Short/medium term
Efficiency	(Cost over effects)
	S2R: Several parts of the solution are ready.
Maturity	Good access perspectives for infrastructure managers that own
	bridges
Mentioned by	ProRail, S2R IN2TRACK projects
Experience	-
Comment	-
https://proj	iects shift2rail.org/s2r_in3_n_aspx2n=IN2TRACK

https://projects.shift2rail.org/s2r_ip3_n.aspx?p=IN2TRACK

•

https://projects.shift2rail.org/s2r_ip3_n.aspx?p=IN2TRACK2 https://projects.shift2rail.org/s2r_ip3_n.aspx?p=IN2TRACK3 •

5.3.2. Electrification: increased efficiency, renewable energy integration and smart management

	Innovation	Ease/rapidity/aff.	Benefits
Level	Low	Low	High
Field	Electrification		
	Full or partial electrifica	ation of tracks	
	Full or partial electrification	ation of trains	

Solution	
	Enabling energy recuperation
Solution	Enabling smart grid management, integrating:
	Renewable energy production
	 Energy storage systems (incl. mobile systems)
	Nowadays, electrification does not only mean building an OCL
	system
	Energy storage technologies allow electrification with a proper
	balance between static supply and onboard storage
Description	Electrification allows the use of inherently more efficient energy medium
	Electrification enables the smart management of energy flows,
	power to load, maximising work efficiency, and power to storage
	to avoid losses

Maturity Mentioned by	Energy storage: Mature, with ongoing developments Multiple	
Maturity	Energy storage: Mature, with ongoing developments	
	Infrastructure: Mature	
Efficiency	(Cost over effect)	
S/M/L term	Mid/long-term	
Constraints, challenges, or lessons learnt	Capital expenditure is the main challenge	
Ease of implementation	Significant work usually required: study, budgeting, conception, design	
Effects (CO ₂)	Footprint: https://uic.org/sustainability/energy-efficiency-and-co2- emissions/article/carbon-footprint-and-sustainability	
Benefits Effects	Energy: Improved efficiency of both electric and hybrid vehicles, with kinetic energy recovery (reducing fuel costs) Allows renewable energy to be used (reduced costs & energy dependency on the market)	
Costs and resources required	 From least to most expensive: Onboard storage (full electric or hybrid trains), limited range with electricity. Good for short lines Partially electrified line with electric or hybrid trains (charging points or electrified segments). Full track electrification, no need for onboard storage (but will allow any hybrid train to use electricity), for dense traffic 	
Objective How to	 most efficient point (to generate electricity or on-demand power) Smart grid management helps the most efficient use of renewable energy and energy storage systems (both static and mobile), and the most efficient supply/load balance (peak shaving, delaying production input or delaying consumption) to be made Reach peak electric traction efficiency and capabilities Electrification can be achieved in two ways: Full: equipment/infrastructure electrification Hybrid: onboard energy storage and partial static electrification or charging points The second setup adds flexibility when capital expenditure would be too large for a line, for example, when it is only expected to have moderate traffic The railway grid, combined with the public grid and smart management with energy storage, can help to have highly efficient electricity distribution and allocation 	
	Electrification allows the use of a company's own resources and secures a railway's energy supply by using renewable energy Electrification allows regenerated kinetic energy to be used via electrodynamic brakes Partial electrification of vehicles (hybridisation) allows a combustion engine paired with a battery to be set to run at its	

5.3.3. Supply structure/neutral sections

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	Low	Medium

Field	Electricity feeding strategy	
	Identifying the best supply system locations on a line, according	
Solution	to the foreseen traction power needs and gradients: neutral	
Colution	section to avoid power equipment use and losses	
	Substations operating in parallel can improve the supply	
	efficiency and reduce neutral sections.	
	Neutral sections in AC electrification do not generally generate	
	particularly high losses and therefore do not have energy saving	
	potential. The issue is more in terms of train dynamics as they	
	may lose speed by crossing them, and no longer respect the timetable.	
	For 75 years now, at the design stage, design studies have tried	
	to:	
	• Find the best neutral sections in sections with low gradients	
	Avoid neutral sections where traction is necessary	
	• Reduce the length of the neutral sections (i.e., 142m or 400m	
	see TSI or EN 50367)	
	Automate the link between traction units and infrastructure to	
	avoid manually switching between adjacent overhead	
Description	contact lines (OCL)	
	Where both a neutral section and traction energy are necessary,	
	it is useful to implement an automated changeover switch	
	system, which makes the neutral section transparent for the	
	traction unit. It is possible to link adjacent OCLs through	
	converter stations. This provides redundancy and better voltages	
	at pantographs with an energy flow from one OCL to another	
	Energise neutral sections by:	
	• Feeding the train through converters stations using a	
	Railway Interline Power Flow Converter (RIPFC):	
	double side feeding, (improving voltage levels,	
	reducing losses and increasing track capacity), peak	
	load reduction (see 5.3.7 Flexible traction energy	
	supply systems)	
	Note: In Europe, passing through a neutral section [AC-AC	
	(phase) or DC-AC (system)] shall be in accordance with the TSIs	
Objective	and EN 50388 and 50367.	
Objective	Define optimal power supply equipment location and setting up	
	Locate neutral sections in sections with low gradients	
How to	Energise neutral sections by: Energise neutral sections by:	
	• Feeding the train through converters stations	
Costs and	 Having an automated changeover switch system 	
resources	-	
required		
	Energy:	
Benefits	Depends on the specific train operation use case and the	
Effects	solution implemented, double-side feeding and voltage stabilisation can significantly reduce transmission losses	

Effects (CO ₂)	Footprint:
Ease of implementation	-
Constraints, challenges, or lessons learnt	-
S/M/L term	-
Efficiency	(Cost over effect)
Maturity	-
Mentioned by	S2R FINE2, SNCF Réseau
Experience	SNCF Réseau (FINE 2 Study for parallel operation of substations)
Comment	-

• https://projects.shift2rail.org/s2r_ipcc_n.aspx?p=fine-2

5.3.4. Infrastructure manager information for railway undertakings: increase the operator awareness regarding more efficient driving and consumption at standstill

Level	Innovation Medium	Ease/rapidity/aff. Medium/high	Benefits High
Special note	Inventive solution	Medium/mgn	T HIGH
Field	Collaboration/partners measures	hip between IMs and RUs to	o define
Solution	The solution concerns collaboration and information sharing from IMs to train operators. Given that IMs have useful information regarding consumption as they are more likely to have access to the energy meter data from plug sockets and any other stationary equipment.		
Description	 Reporting driving issues due to tracks/infrastructure Collaboration/cohesion for efficient power management IM to provide TMS link for DAS 		
Objective	Energy saving, avoiding network collapse due to overconsumption		
How to	 This solution goes beyond an operator-only solution: Collaboration between IMs & RUs regarding traction energy consumption patterns, anomalies, possible improvements Collaboration for strategies on timing energy supply with traffic management and stabling/maintenance/operation times Real-time information sent to drivers through automatic messages sent from TMS, and automatic or manual adjustment of traction unit power consumption (disruption management with C-DAS or other) 		
Costs and resources required	Best use of investmen	t, better reliability, availabilit fety (RAMS) of the system.	

Benefits Effects	Energy: According to identified saving potentials	
Effects (CO ₂)	Footprint: According to traction energy saved and energy mix behind	
Ease of implementation	The number of operators involves more complexity but also more information	
Constraints, challenges, or lessons learnt	Possible issues in terms of railway traffic management (implementation not possible due to traffic management/timetable constraints)	
S/M/L term	Short-term implementation	
Efficiency	(Cost over effect)	
Maturity	-	
Mentioned by	-	
Experience	-	
Comment	-	

5.3.5. Smart control of power supply and ondemand supply

	Innovation	Ease/rapidity/aff.	Benefits		
Level	High	Medium	High		
Field	Smart control of powe				
Solution	Automatic control of p				
	to avoid inherent operation				
	Substations have trans energy according to po				
	supplying any trains, in				
Description	with an active power e				
	presence of trains. Thi	5	5		
	communication taking				
Objective	Energy saving and op	timal equipment use (r	educed losses &		
objective	wear)				
	The process bus transmits sampled values (SV: current and				
	voltage), measured and digitised by merging units to the				
	protection device. Leading to new control and protection functions.				
	Coupled with a system that detects the presence of trains, a				
How to	power switch turns the supply system on or off if there are no				
110 10	trains. The power switch which is triggered at specific times to				
	avoid stress and energy losses in the equipment.				
	The technology, almost state-of-the-art in the public energy				
	supply, has not been used for railway power supply applications before. The challenge is with the individual peculiarities of the				
	railway power supply resulting in different requirements and				
	prerequisites.				
Costs and	· · ·	the state of the second se	/		
resources required	SNCF: Cost of installa	tion of a power switch	automated switch		
Benefits	Considerable impr	ovement of the railway	y system's energy		
Effects	efficiency				

 Positive impact on the lifespan of equipment. Contribution to better plan investments and evaluation of the railway system's energy efficiency 		
Polated to electricity acyed, depending on electricity production		
Related to electricity saved, depending on electricity production mix		
New technology		
-		
Short term		
It works well, with results present		
Mature (in use in the energy market) S2R: Solution ready. Besides laboratory testing and trial operation of the process bus technology in a 16,7 Hz railway power supply environment, the Shift2Rail IN2STEMPO project investigated the application in further railway power supply systems, the necessary homologation process to introduce the technology into the market and connections to further WPs. The tests have shown the overall applicability of process bus in an 16,7 Hz railway power supply environment. Furthermore, the IN2STEMPO project has highlighted necessary engineering tasks and limits of a single process bus network as well as used device.		
SNCF Réseau, 1,5kV DC, under study Shift2Rail IN2STEMPO project		
SNCF: 3 years		
Feasibility and advantages demonstrated. Large-scale use will decrease costs. Many possible applications (i.e., adaptation of the number of rectifiers in service in large substations according to real traffic volumes)		

https://projects.shift2rail.org/s2r_ip3_n.aspx?p=IN2stempo

5.3.6. Increased voltage for better transmission efficiency

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	Low or High	High
Special note	More sharing need	led	
Field	Electricity losses in the traction energy transmission system		
Solution	 Higher voltages to reduce transmission losses in the overhead contact line. Bane NOR: Transport at double voltage, distribution to pantographs at TSI stipulated values through autotransformers 		

	• FS RFI: Increase the traction supply voltage in electrical substations in order to decrease energy loss (up to 3.9kV DC and 27.5kV AC)		
Description	• Bane NOR: Approx. 2% of the energy in the electric traction power supply system is lost in the overhead catenary system (16GWh for Bane NOR every year). By changing the old 15kV to the new 30kV system, losses are estimated to go down by 60% for 25kV and 75% for 50kV		
Objective	Reduce transmission losses		
	The idea is to use the highest permanent suitable voltage system (e.g., 27.5kV) for the substation transformer: Increase the line voltage (e.g., at 3.9kV DC) instead of operating		
	at a lower voltage, by acting on the tap changer of the traction transformer. This allows to reduce the catenary energy losses.		
How to	Another method is to change the power supply infrastructure from a single-phase to a double phase system with		
	autotransformer posts. This solution initially requires high		
	investment, but reduces catenary energy losses while also		
	increasing the power supply infrastructure's general		
	performance.		
	Bane NOR's grid is using 15kV over 16.7Hz. A feeder line of		
	-15kV is added to the 15 kV feeder allowing 30kV to be used.		
	So the traction power supply system is 15 kV, and is known as 2x15 kV with autotransformers		
Costs and resources required	Bane NOR: A cost benefit analysis for each project in terms of train performance, CAPEX, OPEX, CO ₂ emissions has to be carried out to make a choice between single 15 or 2x15 kV		
Benefits Effects	 Energy: Using an autotransformer system compared to the conventional system, can reduce transmission resistance by up to 30% FS RFI: Expect a -5% due to this measure, combined with staff training for driving and energy saving on stabled trains 		
Effects (CO ₂)	Footprint:		
Ease of implementation	 Easy if possible by acting on the transformer Expensive if changing power supply 		
Constraints,	FS RFI: Possible issues related to overvoltages at the		
challenges, or lessons learnt	pantograph		
S/M/L term	FS RFI: Short-term implementation		
Efficiency	(Cost over effect)		
Maturity	High maturity for 25kV, technology in use since the 1960s		
Mentioned by	Bane NOR, DB, Trafikverket, SBB, FS		
Experience	25kV since the 1960s, also implemented in Germany, Sweden , Switzerland (Luino) with 15kV		
Comment	This is 2x15kV with autotransformers. 30 kV is difficult to implement, as is 50kV. Additionally, 30kV is not TSI compatible. Consistency with RST TSI and Energy, EN 50163 and 50388 required Also concerns 1.5kV		
	UNIFE: The same approach could be implemented on all PS voltage systems (1.5kV DC, 15kV AC, 750V DC, etc.)		

5.3.7. Flexible traction energy supply systems

Level	Innovation High	Ease/rapidity/aff.	Benefits High
		modiam	
Special note	Inventive solution		
Field	Electricity losses in AC	c traction energy transmissi	ion systems
Solution	Smart traction power s Connect phase pairs: Double-side feeding a flexible AC transmission Using different FACTS	supply 50Hz AC (Shift2Rail send energy back to the pu nd power quality improvem	In2stempo): iblic grid ents by using cy converters)
	SNCF Réseau: Balanc	cers voltage boosters	
Description	 Flexible AC Transmiss Static var compento improve voltage capacity) (cheaper Ready to use Railway interline pfeeding, (improvinincreasing track cates Benefit: no need to the management of structure/neutral sections Allows peak load refeeding, power quineutral sections Ready to use 	sion System (FACTS): sator (SVC): compensates e levels (reduces losses, inc r and easier to implement th ower flow converter (RIPFO g voltage levels, reducing lo apacity), peak load reduction o change substations. This of neutral sections (see 5.3. ections) onverter (SFC): used insteat tation to control flows reduction, voltage stabilisat ality improvement, and the	creases track han SFC) C): double-side osses and on is a solution for .3 Supply ad of a ion, double-side
Objective			
How to	double-side feeding ca coupled This leads to improved losses, better energy e demand peak reductio SVC can be used to co improve the line's volta	ompensate reactive power	sections can be transmission and power and thereby

	Examples:	
	 The European MERLIN Project (mainline smart grid) 	
Costs and resources required	Depends on substation size and technology used	
Benefits Effects	Energy: Depends on the specific train operation use case and the solution implemented, double-side feeding and voltage stabilisation can significantly reduce transmission losses	
Effects (CO ₂)	Footprint:	
Ease of implementation	SVC and SFC are state-of-the-art	
Constraints, challenges, or lessons learnt	These solutions need to be studied in conjunction with their impact on traction units and related functioning within the traction power supply facilities. To be included in EN50388. Impact on signalling systems shall also be verified	
S/M/L term	Medium/long-term implementation (due to investment planning requirements)	
Efficiency	(Cost over effect)	
Maturity	Feasible, demos held as part of S2R/ERJU SFC and SVC are ready to use	
Mentioned by	d by SNCF Réseau, Eurotunnel, NR, DB, Bane NOR, TRV, ÖBB, SBB	
Experience	DB, SNCF, ÖBB and SBB since more than 20 years	
Comment	-	

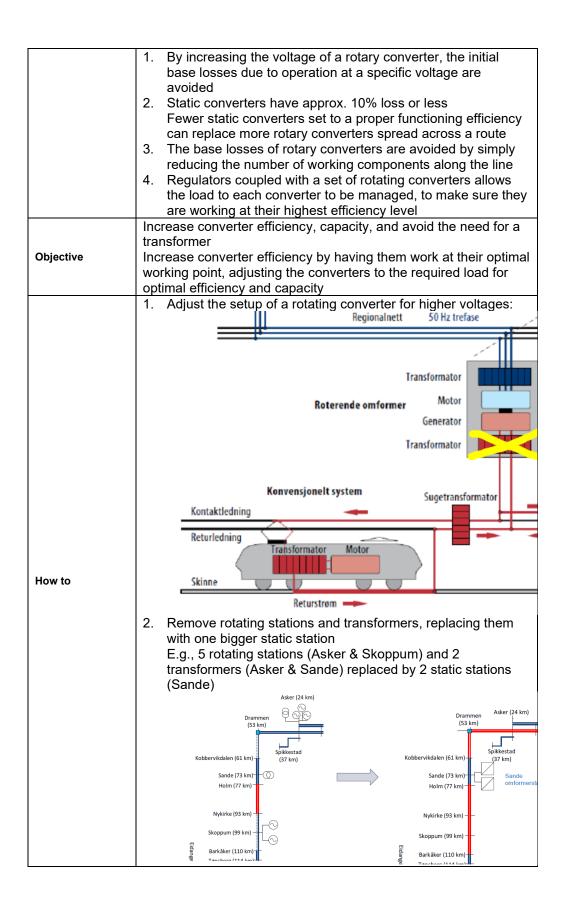
5.3.8. Installing energy recovery systems on DC railway lines

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High
Special note	Inventive solution		
Field	Using braking energy	on DC electric traction powe	ered networks
Solution	Inverter technologies networks	to feed energy back to the s	upplying power
Description	 contribute to a high trains during brack energy is capture by between 7% a services, and the line Trackside energy energy storage) 	ations within a DC power sup gher use of the energy reger te applications, as most of th ed, which can reduce energy and 15% depending on the lin number of reversible substant storage (see solution <i>5.3.16</i>	erated by e braking consumption he, the titions on the 6 <i>Trackside</i>
Objective	To ensure that train b braking resistors	raking energy is reused and	not wasted in
How to	urban rail, charging u storage system as (si	tation, which has power sup nits for electric road vehicles uch as from the GUW+ proje que synergy and operational	and an energy ct for urban

	the operator. Thanks to a bi-directional input converter, several		
	smart grid services become possible		
	Schedules		
	Charging station for buses and cars		
	Reversible DC substation with intermediate storage and charging station(s)		
Costs and	-		
resources required Benefits			
Effects	-		
Effects (CO ₂)	-		
Ease of implementation	Several manufacturers can offer this solution		
Constraints, challenges, or lessons learnt	It is not always possible to feed regenerated energy back into the public network, due to constraints from the public DSO/TSOs. These devices should be designed after traffic analysis is carried out. It has been demonstrated that implementing these devices in very dense traffic areas has no major impact, as neighbouring trains consume the regenerative energy		
S/M/L term	Medium/long-term implementation (due to investment planning requirements)		
Efficiency	(Cost over effect)		
Maturity	-		
Mentioned by	FS SNCF Réseau (reversible substations) ADIF & RENFE (reversible substations and rolling stock regeneration capabilities), tram and metro operators		
Experience	-		
Comment	-		

5.3.9. Recovered braking energy: optimal management

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	High	Medium
Field	Optimal use of recovered energy via electronic brakes		
Solution	Ensuring that the energy recovered via the overhead contact line within an IMs network will be spent or stored instead of lost. As		



	 suggested in the solution from Operations, 5.2.7 Fine tuning train services, timetabling can synchronise train acceleration and braking phases to ensure that energy is spent. However, energy can now also be stored in energy storage systems, or returned to the grid Bane NOR: Synchronising recovered braking energy which is fed back to the grid with demand from the network or public grid
Description	 Bane NOR: Demand has to match the braking time. Connected to the public grid, Bane NOR ensures that the demand matches the surplus energy created by regenerative braking. This ultimately reduces the RU's overall energy consumption (recovery partially compensates consumption)
Objective	Maximise energy recovery via efficient (time/proximity) allocation
How to	-
Costs and resources required	-
Benefits Effects	Braking energy can be used by another train or by the public grid, which results in savings
Effects (CO ₂)	-
Ease of implementation	-
Constraints, challenges, or lessons learnt	-
S/M/L term	-
Efficiency	-
Maturity	-
Mentioned by	- Bane NOR
Experience	-
Comment	

5.3.10. Avoiding and reducing rotating converter losses (15kV, 16.67Hz systems)

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	High	High
Field	Electric losses in th	e traction energy transmi	ission system
Solution	 reduce losses, rotary converte 2. Replacing rotat losses, if the re 3. Redesigning th to replace a set converters 4. Adapting the fu converter(s) to 	ing converters with static quired energy output is n e feeder system via a set t of geographically spread nctioning point of a (set o fit the required load to red	nctioning voltage of converters to reduce noderate t of static converters d-out rotary of) rotating duce losses
Description	Rotating converters	have a 20-30% loss rati	0:

Costs and resources	 Analyse a segment's needs and accommodate this with the appropriate numbers of converters for operation at their highest efficiency level Smart management of the rotating converter's operation can increase the efficiency according to the load. By adjusting the regulator to the rotary converters' optimal operating point (also meaning optimal efficiency levels (voltage)), the initial base losses are avoided (losses are higher at a lower operating point) Note: Rotating converters are retrofitted as high voltage 	
required	converters. The cost of a retrofit is low.	
Benefits Effects	 Increased converter efficiency Avoid the need for a transformer before the grid Reducing the number of working components reduces the number of potential failures For rotating to static: Long-term benefits due to increased efficiency (40 years) More stable given the reduced number of stations Reducing the number of working components reduces the number of potential failures Losses are reduced to approx. 1.5-2% per static station, compared to 10-15% per rotating station Result in terms of energy: Rotating converters have a 20-30% loss Static converters have approx. 10% loss or less A smart management system helps to make the most out of a (set of) converter(s), and avoid the losses from multiple converters working at the same time if they are not needed. Increased efficiency of the converter(s) (in operation) 	
	Smart management also helps to reduce the number of components constantly in use, thus reducing the number of potential failures Energy: Avoiding the inherent losses from the converters which	
Effects (CO2)	were removed Footprint: Relative to energy saving and the electricity mix in use Balanced use to save equipment from wear and tear (better lifecycle)	
Ease of implementation	-	
Constraints, challenges, or lessons learnt	-	
S/M/L term	-	
Efficiency	-	
Maturity Montioned by	-	
Mentioned by Experience	-	
Comment		
comment	-	

5.3.11. Lighting: efficiency and management

	Innovation	Ease/rapidity	Benefits
Level	Medium	High	Medium

Special note

More sharing needed

Field	Avoid and reduce rail infrastructure specific lighting energy
	consumption
Solution	 Intelligent control (dimming and/or powering off) Replace old lighting with more efficient (LED) lamps For general building lighting, see <i>5.4.6 Smart and efficient</i> <i>LED lighting</i>
Description	 Lighting adapted to operational requirements: Switched off when there is sufficient light Automatic switch on when in operation in the dark Automatic switch off when rolling stock is not in use Automatic/manual switch on or off for different maintenance phases
Objective	Save energy through the moderated use of lighting
How to	-
Costs and resources required	-
Benefits Effects	Energy: LED lights would only require a few watts to illuminate, thus benefits are relative to the scale of deployment
Effects (CO ₂)	-
Ease of implementation	-
Constraints, challenges, or lessons learnt	-
S/M/L term	-
Efficiency	-
Maturity	-
Mentioned by	-
Experience	-
Comment	-
UIC Non-traction e	energy study report 2012

UIC Non-traction energy study report 2012 https://uic.org/sustainability/energy-efficiency-and-co2-emissions/

5.3.12. Switch/turnout heating system management, optimisation and upgrading

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	High	High
Field	Power management for switch/point heating		
Solution	Optimising switch heating controls to reduce energy consumption without affecting safety and availability. This commonly means		

	upgrading to more efficient, automated and electric heating (avoiding unnecessary heating), and avoiding the use of gas
	System management scheduled according to weather forecasts to eliminate excess energy consumption from heating
	Energy efficiency for switch heating can be ensured through a proper power management of the electronic control cabinets/power units
	For non-automatic electric switch heating systems, increasing staff awareness regarding efficient and effective management is another solution to decrease energy use
	Proper heater insulation is crucial to avoid wasting heat. A combination of better insulation and power regulation significantly increases the heater energy efficiency (UIC-FFE, 2017)
	The heater technology itself can be switched to a more efficient/less critical energy source (e.g., gas to electric). Another solution is to use geothermal heat, wherever possible, as described in UIC-FFE 2017.
	Switching to electric and/or automatic switch heating has been RFI's solution. For SBB, weather stations along the track measure the outside temperature and precipitation. The updated software control logic now uses this information to optimise the switch-on and switch-off parameters, which can be optimised through longer test runs for gas heaters
Description	In 2013, railway switch heating represented 50% of Bane NOR's total energy consumption, and half of the electronic control cabinets/power units at that time did not have power management. The deployment of a power management system has increased this figure to 91.5% as of September 2023 (which this being at 80% in 2017). Now, Bane NOR is pushing the responsible parties to regulate the final ones according to temperature and weather
Objective	To reduce switch heating energy demand and to ensure that heating is not on when it is not needed
	Link functioning levels/schedule to temperature/weather forecasts for a smart predictive adjustment Upgrade to electric heating, thus avoiding the use of gas, and switching to more efficient heaters Upgrade to automatic heaters (to avoid unnecessary heating
How to	time) Through longer running tests, it is also possible to reduce the gas switch heating parameters from 14°C to 10°C (temperature sensors at the rail foot for switching burner tubes)
	Electronic control cabinets/power units can be replaced with new power managed units, which have temperature sensors in the air and on the tracks, and know when precipitation occurs. They are

Costs and resources requiredThe price of the power management system and its installationBenefits EffectsAutomatically switching off heating saves energy that would be wasted when the weather conditions mean that heating is not required Heating times could be reduced by around 120 hours per year without any impact on the availability and safety of the switch heating systemsBenefits EffectsThe power management systems could cut non-traction energy losses for switch heating by up to 60%Effects (CO2)Relative to the reduction in energy consumptionEase of implementationEasy, solutions already exist. For electronic control cabinets/power units, software allows them to be monitored Possible issues in terms of railway traffic management. Needs to be followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceConstraints, challenges, or lessons learntBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/W/L termShort-term implementation for electric/automatic switch heater installation Short-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MatureBane NOR has been using ProxII, Malthe Winje, and Pintsch		
resources requiredThe price of the power management system and its installationBenefits EffectsAutomatically switching off heating saves energy that would be wasted when the weather conditions mean that heating is not required Heating times could be reduced by around 120 hours per year without any impact on the availability and safety of the switch heating systemsBenefits EffectsThe power management systems could cut non-traction energy losses for switch heating by up to 60%Effects (CO2)Relative to the reduction in energy consumptionEase of implementationEasy, solutions already exist. For electronic control cabinets/power units, software allows them to be monitoredPossible issues in terms of railway traffic management. Needs to be followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceSimplementationBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/M/L termShort-term implementation for electric/automatic switch heater installation Short-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MatureMaturityMature		connected to a weather station, so they know the forecasted temperature
requiredAutomatically switching off heating saves energy that would be wasted when the weather conditions mean that heating is not required Heating times could be reduced by around 120 hours per year without any impact on the availability and safety of the switch heating systemsEffectsThe power management systems could cut non-traction energy losses for switch heating by up to 60%Effects (CO2)Relative to the reduction in energy consumptionEase of implementationEasy, solutions already exist. For electronic control cabinets/power units, software allows them to be monitoredPossible issues in terms of railway traffic management. Needs to be followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceConstraints, challenges, or lessons learntBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/M/L termShort-term implementation for electric/automatic switch heater installation Short-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MatureMatureBane NOR has been using ProxII, Malthe Winje, and Pintsch		
Benefits Effectswasted when the weather conditions mean that heating is not required Heating times could be reduced by around 120 hours per year without any impact on the availability and safety of the switch heating systemsBenefits EffectsThe power management systems could cut non-traction energy losses for switch heating by up to 60%Effects (CO2)Relative to the reduction in energy consumptionEase of implementationEasy, solutions already exist. For electronic control cabinets/power units, software allows them to be monitoredPossible issues in terms of railway traffic management. Needs to be followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/M/L termShort-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MaturityMaturityMature		
Effects (CO2)Relative to the reduction in energy consumptionEase of implementationEasy, solutions already exist. For electronic control cabinets/power units, software allows them to be monitoredConstraints, challenges, or lessons learntPossible issues in terms of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceS/M/L termBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/M/L termShort-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MatureMaturityMature		wasted when the weather conditions mean that heating is not required Heating times could be reduced by around 120 hours per year without any impact on the availability and safety of the switch heating systems The power management systems could cut non-traction energy
Ease of implementationEasy, solutions already exist. For electronic control cabinets/power units, software allows them to be monitoredPossible issues in terms of railway traffic management. Needs to be followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceConstraints, challenges, or lessons learntBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/M/L termShort-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MatureMaturityMature	Eff at (00)	
implementationcabinets/power units, software allows them to be monitoredPossible issues in terms of railway traffic management. Needs to be followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceConstraints, challenges, or lessons learntBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/M/L termShort-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MatureMatureBane NOR has been using ProxII, Malthe Winje, and Pintsch		
Constraints, challenges, or lessons learntPossible issues in terms of railway traffic management. Needs to be followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceConstraints, challenges, or lessons learntBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/M/L termShort-term implementation for electric/automatic switch heater installation Short-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MatureMaturityMature		
Constraints, challenges, or lessons learntbe followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenanceBane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to installS/M/L termShort-term implementation for electric/automatic switch heater installation Short-term implementation for staff managementEfficiencyMedium to high, since a lot of energy can be used for heating MatureMaturityBane NOR has been using ProxII, Malthe Winje, and Pintsch	implementation	
S/M/L term installation Short-term implementation for staff management Efficiency Medium to high, since a lot of energy can be used for heating Maturity Mature Bane NOR has been using ProxII, Malthe Winje, and Pintsch	challenges, or	 be followed up continuously with someone to analyse the cost/benefit ratio of regulated switch heaters. If switch heaters are monitored at the same time and an anomaly is spotted, it is possible to adjust them during maintenance Bane NOR used to have a system from a producer to monitor switch heating and more (Genesis from Malthe Winje), but they have now built their own system to independently manage the data according to their needs and so that it work smoothly with each supplier that they choose to install
Maturity Mature Bane NOR has been using ProxII, Malthe Winje, and Pintsch	S/M/L term	installation
Bane NOR has been using ProxII, Malthe Winje, and Pintsch	Efficiency	Medium to high, since a lot of energy can be used for heating
	Maturity	Mature
cabinet/power unit smart management solution	Mentioned by	regulation systems to implement the electronic control
Experience Bane NOR has reported that their experience with the electronic control cabinet/power unit smart management solution has been very good so far	Experience	Bane NOR has reported that their experience with the electronic control cabinet/power unit smart management solution has been
Comment -	Comment	-

5.3.13. Tunnels

	Innovation	Ease/rapidity/aff.	Benefits	
Level	Medium	Medium	High	
Field	Tunnel manageme	Tunnel management		
Solution	Fine tune tunnel lig	Fine tune tunnel lighting and ventilation to save energy		
Description	 Tunnel ventilation can represent high energy use: adjusting ventilation to reflect exact needs can save energy 			

	 Caution must be taken as lowering or increasing ventilation might influence traction energy consumption (e.g., pressure in long tunnels) As for other buildings, tunnel lighting can be switched for a more efficient technology (LED) Tunnel optimisation to reduce resistance from pressure (Niu et al., 2020): Lowered pressure Pressure recycling ducts Tunnel portals 		
Objective	Save traction energy, ventilation and lighting spent through and for tunnels		
How to	Alternation to tunnel operational practices		
Costs and resources required	-		
Benefits Effects	-		
Effects (CO ₂)	Footprint:		
Ease of implementation	-		
Constraints, challenges, or lessons learnt	 Safety restrictions in each country: Switching off lighting may have safety implications Fire safety for ventilation 		
S/M/L term	Short		
Efficiency	(Cost over effect)		
Maturity	-		
Mentioned by	ProRail		
Experience	-		
Comment	-		

5.3.14. Measurement equipment

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	Medium	Medium

Special note

Inventive solution

Field	Monitoring energy consumption		
Solution	Monitoring the energy consumption of electrotechnical systems and subsystems		
Description	 Monitoring the energy consumption of electrotechnical systems and subsystems helps to: Understand consumption patterns Identify anomalies and areas with energy saving potentials Show real savings due to improvements 		
Objective	Understand flows and units with high consumption in the electric traction power supply system to identify options for optimisation		
How to	Different approaches to monitoring in substations, on trains, or locations within the system are possible. Pre-existing Supervisory Control And Data Acquisition systems (SCADA, a control system architecture comprising of computers, networked		

	data communications and graphical user interfaces for high-level supervision) can be used for monitoring within substations. The more values and information gathered, the better the analysis is		
Costs and			
resources	Depending on the extent of monitoring		
required Benefits			
Effects	-		
Effects (CO ₂)			
Enects (CO ₂)			
implementation	Monitoring equipment is available from many manufacturers		
Constraints,	Depending on the level and extent of monitoring, a lot of		
challenges, or lessons learnt	equipment is needed, and a high volume of data needs to be		
	processed		
S/M/L term	-		
Efficiency	-		
Maturity	Ready to be used		
Mentioned by	-		
Experience	-		
Comment	-		

5.3.15. Renewable energy supply

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	Medium	High

Special note

Inventive solution

Field	Renewable energy supply		
Solution	Increasing the share of renewable energy fed into systems to reduce dependency on the energy market (prices)		
Description	Infrabel: Connecting photovoltaic (PV) power plants to supply the railway grid with green electricity		
Objective	Reduce the carbon footprint, ensure that some of the electricity supply is at a fixed price		
How to	Own investments or have an agreement with a third party (Power Purchase Agreement) and an agreed price over a defined timeframe (e.g. 20 years)		
Costs and resources required	For own investment: approx. 1.5M€ for 1MW plant For third-party investment: limited investment costs (man-hours for tendering and connecting the supply to the railway grid only) and reasonable electricity prices		
Benefits Effects	Energy: Green electricity, own dedicated production		
Effects (CO ₂)	Footprint: Footprint of installing the specific plant, emission free while operating, emission reduction if replacing a fossil fuel		
Ease of implementation	Permits are needed for large PV plants (especially if not on roofs). For PV plants on sidings, it may come into conflict with the environmental value of the trackside		

	Renewable sources can be intermittent and therefore not		
	systematically usable for permanent consumption, such as for		
	traction. Different ways of consuming this intermittent energy are		
	to:		
	- Send the energy flow to the traction substation and		
Constraints,	decrease the power use from the main grid.		
challenges, or	- Store it (batteries, chemical, flywheel, H2) for use at the		
lessons learnt	best possible time (See 5.3.16 Trackside energy		
	storage)		
	- Send it to the mains, which acts as a overall "reservoir"		
	for electricity customers		
	- Directly consume it onsite for stations, auxiliary		
	installations, via a storage system		
S/M/L term	Medium		
Efficiency	High due to high benefits		
Maturity	Very mature technology. Prices have dropped significantly in last		
waturity	decade		
	Infrabel covered the protective roofing of HSL 4 at Peerdsbos		
Mentioned by	with 3.5MW of solar power in 2011 (via a third party). Infrabel will		
	also be investing in 2.7MW of solar power on a field next to the		
	Avernas substation (HSL 2). Infrabel is investigating the building		
	of substantial power generation (multiple MWs of solar power) on		
	HSL 2 sidings.		
Experience	See ease of implementation		
Comment	-		

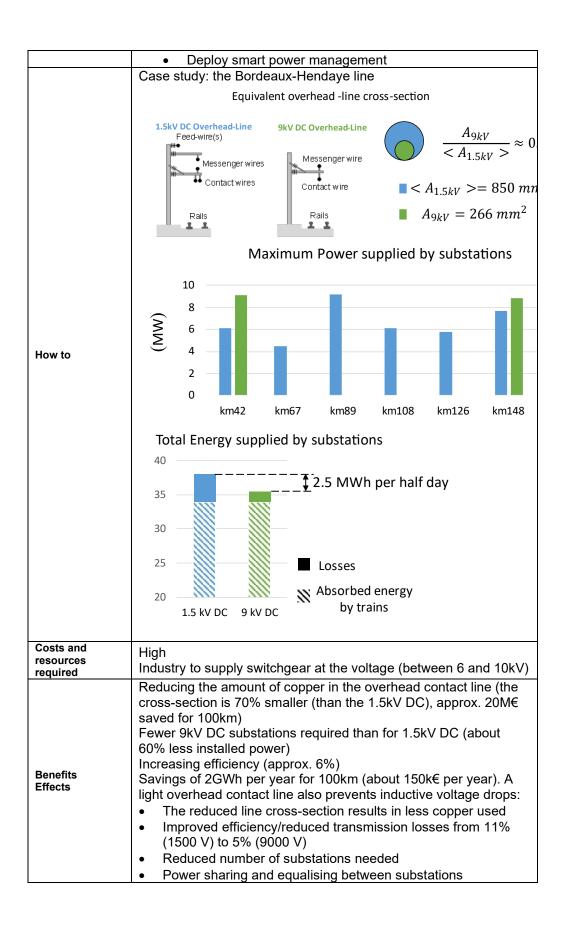
5.3.16. Trackside energy storage

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High
Special note	Inventive solution		

Field	Stationary energy storage systems	
Solution	 Large stationary hybrid super capacitors and battery storage Infrabel: Flywheel (mechanical) PKP: Hydrogen (chemical) Battery, capacitors (chemical) Water (mechanical) Air (mechanical) 	
Description	Energy storage technologies are becoming more and more mature. The most common technology is the lithium battery, due to its high energy density per unit of mass or volume An energy storage system (ESS) allows "load shedding" for both production and demand on the grid (when paired with renewable energy and the traction grid) It is important to note that common lithium battery technology allows a moderate energy input and output, which is why pairing it with supercapacitors or electric double layer capacitors (EDLC) is important. EDLCs allow significant energy transmission, to maximise recovery efficiency (UIC 2019 Workshop)	

	 Infrabel: Flywheel technical specifications Energy: 26.1kWh (= 3MW for 31.32 seconds) Power: 3MW Rotation speed: 4000 rpm Rotating part: 5 tons Diameter: 1m50 Noise: up to 120 dB(A) PKP: Hydrogen production and storage via electrolysis from solar energy. It will allow up to 23kg of hydrogen to be stored at one time with the power output for individual components being 36kW for the electrolyser, 20kW for the fuel cell capacity, and approx150kWp for the solar farm. Will be used to power a substation. In the future, traction energy for both electric and hydrogen trains (current and
	fuelling) may be provided ⁷
Objective	 Avoid peak power charges by using stored energy Improve braking energy recuperation/better line coverage for recuperation
How to	• Infrabel
Costs and resources	
required	
Benefits Effects	The principle of using an ESS is to reduce energy demand during peak hours, and store excess power. This equalising role can also be achieved for connected renewable energy production plants. Thus, energy savings can be significant, depending on the imbalance between energy supply and demand. Avoiding peak power transmission allows reducing transmission stress (thus heat and losses) in general. Additionally, the energy storage system can help make sure regenerated energy will be stored and reused around the location.

⁷ https://transformercalculations.com/blog/pkp-energetyka-to-build-hydrogen-storage-at-traction-substation



	Infrabel:		
	 Short term: recuperation of braking energy + smoothing the power supply 5MW 100kWh 100 cycles per day 		
	 Storage of produced energy 		
	500kW 1000kWh 1 cycle per day		
	o UPS		
	100kW 1000kWh 1 test cycle per month		
	2kW 10kWh 1 test cycle per month		
	 Cons: Noise, wear with friction 		
	Hydrogen allows long term energy storage, for example, to		
	provide a rescue power supply		
	Related to avoided heat and losses, and retransmitted		
Effects (CO ₂)	regenerated energy, according to electricity generation mix.		
	Since maturity is very variable between the technologies, it is a		
Ease of implementation	challenge to be an early adopter and get a successful pilot		
implementation	project.		
Constraints,	Risk of failure, obsolescence (technology maturity), limited		
challenges, or lessons learnt	capacities.		
	According to technology.		
	Water storage requires large infrastructure \rightarrow Long term.		
S/M/L term	Battery packs, containers are available on the market \rightarrow Medium		
	term.		
	According to power stress on grid, potential regenerated energy		
Efficiency	saved from waste.		
	Pilot programmes for flywheels and hydrogen		
Maturity	Battery and capacitors solutions are market-ready		
Mentioned by	Infrabel, FS RFI, PKP, SBB, SNCF		
-			
Experience	-		
Comment	-		

5.3.17. Medium voltage direct current electrification systems

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Low	High
Special note	Inventive solution		
Field	Traction power supply s	system efficiency	
Solution	Using a Medium Voltage Direct Current (MVDC) electrification system to reduce transmission losses, copper use Increase the voltage at the overhead contact line.		
Description	SNCF (also within the S2R FUNDRES project) tested a 9kV train supply to optimise the renewal of electrified lines, with interesting results (see below) (Hervé Caron at UIC <i>The role of IMs in the traction energy</i> <i>transition</i> Workshop 2019 & UIC OPEUS D7.1)		
Objective	 Increase energy supply efficiency, Reduce material & equipment use 		

	 Allows a three-phase power supply from the public grid Lighter and simpler power converter onboard locomotives
	 Silicon Carbide power semiconductors enable compact Medium Voltage (MV) traction converter production
	 This system can also be a solution for countries currently without electrification
	 Allows easier integration of the MVDC smart grid concept
	Linked to loss reduction. With a 9kV system, traction power supply system efficiency is the same a 2x25kV (more than 97%)
Effects (CO ₂)	Reduced operational footprint with reduced copper consumption However, the carbon footprint of building the new infrastructure and rolling stock would only be balanced out after a long time
Ease of implementation	Hard, see constraints and challenges
Constraints, challenges, or lessons learnt	Only possible for new lines. The rolling stock also needs to be 9kV capable (current rolling stock cannot operate with 9kV DC) Replacing both existing lines and rolling stock with a new system is costly The Energy TSI needs to be adapted
S/M/L term	Long term
Efficiency	High
Maturity	Attractive for countries that need to develop an electrified railway network A DC system which European railway companies can work towards in the long-term
Mentioned by	SNCF
Experience	Studies carried out in some countries: France, Russia
Comment	The first step is to enhance 1.5kV to 3kV, or use 2x1.5 or 3kV with electronic autotransformers

UIC « The role of IMs in traction energy transition" workshop:

https://uic.org/events/the-role-of-infrastructure-managers-in-traction-energytransition & UIC members access https://extranet.uic.org/en/node/90324?grp=297

5.4. Buildings

This section deals with railway buildings, including stations, offices and workshops. Measures in terms of efficient HVAC, lighting and good practice to avoid specific energy consumption are likely to be applicable to all of the abovementioned types of buildings.

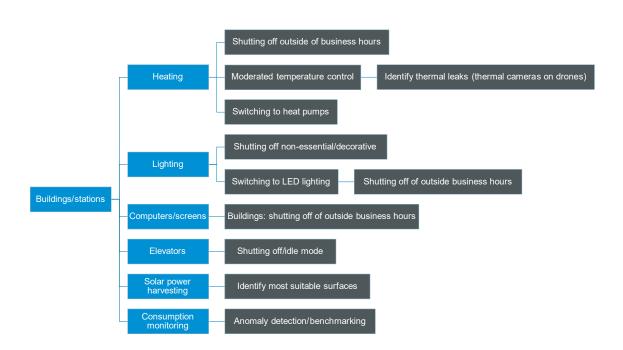
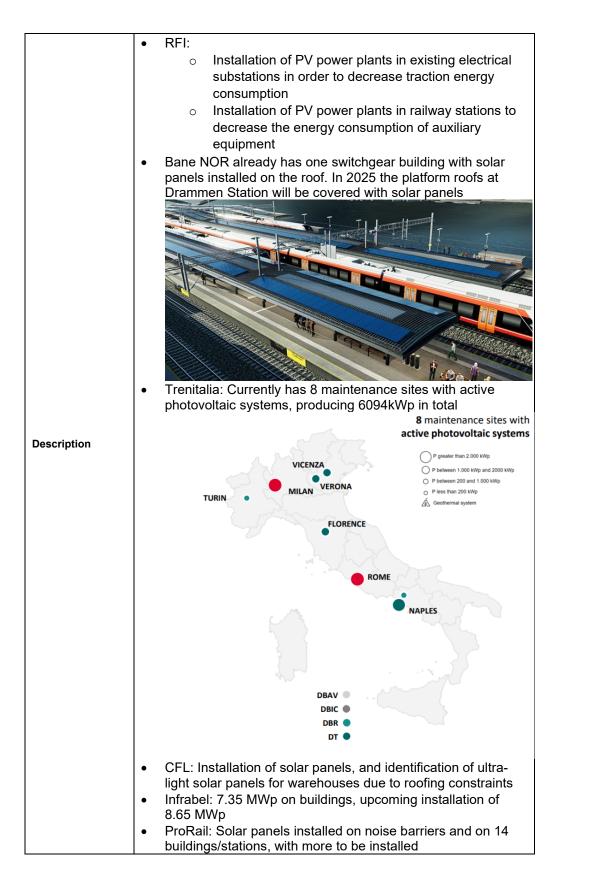


Figure 30: Building/station solutions map as proposed for the UIC workshop

5.4.1. HVAC: efficiency and management

Level	Innovation High	Ease/rapidity/aff. Medium	Benefits High
Field			
Solution	 HVAC energy management Using intelligent HVAC control for buildings: According to weather data/forecasts According to CO₂ levels Setting lower heating/higher cooling temperatures (see detailed strategies in 5.4.3 Practices for saving energy in stations, buildings, and workshops Upgrading equipment to a more efficient system (e.g. heat pumps) 		



	Useful temperature control: find alternatives to heating and cooling lost large scale (e.g., heating jackets, portable coolers)		
Description	 Comfort levels are crucial and temperature settings should be carefully reviewed Optimising actual building designs based on a holistic approach followed by optimising the technical settings of cooling and heating systems Improving the efficiency of the system itself by upgrading to heat pumps and avoiding refrigerants which can be leaked as greenhouse gases Reducing energy losses by identifying and fixing leaks and improving insulation 		
Objective	Save energy on temperature control systems		
How to	SNCF: For some workshops, heating can be inefficient. E.g., very large workshop with very few employees. Heating jackets were offered to staff, allowing to reduce heating energy use. The jackets are waterproof. It is fed by a battery and can offer three levels of heating. It can last up to 10 hours on the weakest mode.		
Costs and resources required	SNCF: 50-150€ per jacket.		
Benefits Effects	SNCF: Heating temperature could be lowered to 15°C thanks to the jackets, without problems on comfort of staff.		
Effects (CO ₂)	Footprint:		
Ease of implementation	SNCF: Procurement and staff dialogue (see below)		
Constraints, challenges, or lessons learnt	 SNCF: The introduction of heated jackets must involve the staff and be agreed with social partners. The reluctance of some employees on safety or medical grounds must be alleviated: no risk of electrocution because voltage is extremely low, safety device to prevent overheating, no electromagnetic fields. Safety and care instructions (washing, storage, etc.) must be followed. 		
S/M/L term	SNCF: Jackets, short term		
Efficiency	SNCF: Good		
Maturity	SNCF: Good		
Mentioned by	-		
Experience	-		
Comment	-		

5.4.2. Harvesting solar power

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High
Field	Renewable energy sup	pply/independent prod	uction
	Install solar panels on the surfaces of buildings which have been identified as being suitable		
Solution	Trenitalia: Install solar panels on maintenance sites all over the country ProRail: Install solar panels on noise barriers		

	SNCF: SNCF Renouvelables was c			
	development of renewable energy p and eligible assets:	roduction on available		
	 15-20% of SNCF's electricit 	y needs will be covered		
	 Reduced costs will fund rail 	way line revitalisation in		
	France, in line with the Fren	ich government's plan to		
	modernise the railways			
	 10,000 hectares were identi 	•		
	production, 1000 of which w	ill produce 1000MWp by		
	2030:			
	 Starting in 2030, they will compared 	onsider using 7000km of		
	 trackside Since more than 80% of SNCF's trains run on 			
	electricity, it will greatly cont	tribute to decarbonising		
	their operations			
	Make the most of unused surfaces to pr	oduce energy within the		
Objective	infrastructure			
Objective	Trenitalia: Increase the energy prod	uction to 16,625kWp by		
	2031			
	Identify suitable locations, in terms of ex	•		
	and proximity to the grid or consumption	-		
	Bane NOR: Working with regulatory	authorities to find out		
		ways to reduce the barriers to new solar projects. To be		
	installed on stations, switchgears and then on buildings and			
	other assets			
	Trenitalia: Increasing the number of	photovoltaic plants to 29		
	and installing a geothermal plant			
		29 maintenance sites with		
	POLZANO	photovoltaic plants and 1 site		
	BOLZANO	with a geothermal plant		
	VICENZA	P greater than 2.000 kWp		
	MILANO VERONA			
	TORINO	P between 1.000 kWp and 2000 kWp P between 200 and 1.000 kWp		
		P between 200 and 1.000 kWp P less than 200 kWp		
How to		O P between 200 and 1.000 kWp		
How to	TORINO VOGHERA ALEXANDRIA SAVONA FIRENZE PISA	P between 200 and 1.000 KWp P less than 200 kWp		
How to	ALEXANDRIA ALEXANDRIA SAVONA FIRENZE	P between 200 and 1.000 KWp P less than 200 kWp Geothermal system		
How to	ALEXANDRIA ALEXANDRIA SAVONA PISA FIRENZE PISA	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system		
How to	TORINO VOGHERA ALEXANDRIA SAVONA FIRENZE PISA	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system		
How to	ALEXANDRIA ALEXANDRIA SAVONA PISA FIRENZE PISA	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system		
How to	ALEXANDRIA ALEXANDRIA SAVONA PISA FIRENZE PISA	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system		
How to	ALEXANDRIA ALEXANDRIA SAVONA PISA FIRENZE PISA	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system		
How to	ALEXANDRIA ALEXANDRIA SAVONA PISA FIRENZE PISA	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system		
How to	ALEXANDRIA ALEXANDRIA PISA FIRENZE PISA FOLM ROM	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system		
How to	ALEXANDRIA ALEXANDRIA SAVONA PISA FIRENZE PISA	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system FOGGIA FOGGIA FOGGIA FARANTO LECCE		
How to	ALEXANDRIA ALEXANDRIA PISA FIRENZE PISA FOLM ROM	P between 200 and 1.000 kWp P less than 200 kWp Geothermal system FOGGIA FOGGIA FOGGIA CATANZARO CATANZARO REGGIO CALABRIA		
How to	ALEXANDRIA ALEXANDRIA PISA FIRENZE PISA FOLH CAGLIARI DBAY	P between 200 and 1.000 KWp P less than 200 KWp Geothermal system SULMONA FOGGIA FOGGIA CATANZARO		
How to	ALEXANDRIA ALEXANDRIA PISA FIRENZE PISA FOLH CAGLIARI DBAV DBIC	P between 200 and 1.000 kWp P less than 200 kWp Geothermal system FOGGIA FOGGIA FOGGIA CATANZARO CATANZARO REGGIO CALABRIA		
How to	ALEXANDRIA ALEXANDRIA PISA FIRENZE PISA FOLH CAGLIARI DBAV DBIC DBR	P between 200 and 1.000 kWp P less than 200 kWp Geothermal system SNO SULMONA FOGGIA FOGGIA CATANZARO CATANZARO REGGIO CALABRIA		
How to	ALEXANDRIA ALEXANDRIA PISA FIRENZE PISA FOLH CAGLIARI DBAV DBIC	P between 200 and 1.000 kWp P less than 200 kWp Geothermal system SNO SULMONA FOGGIA FOGGIA CATANZARO CATANZARO REGGIO CALABRIA		
How to	ALEXANDRIA ALEXANDRIA SAVONA PISA FIRENZE PISA FOLM CAGLIARI DBAV DBIC DBR T	Petween 200 and 1.000 KWP Piess than 200 KWP Geothermal system		
How to	ALEXANDRIA ALEXANDRIA PISA PISA CAGLIARI DBAV DBIC DBR DT Studies on suitable locations for solar pa	Petween 200 and 1.000 KWP Piess than 200 KWP Coordination of the second system		
	ALEXANDRIA ALEXANDRIA SAVONA PISA FIRENZE PISA FOLM CAGLIARI DBAV DBIC DBR T	Petween 200 and 1.000 kWp Piess than 200 kWp Coothermal system		

	Energy: The energy produced by the newly introduced panels		
	adds to the already available energy. It can avoid the necessity of		
	purchasing energy for systems with low power requirement in		
	stations or other assets.		
	Trenitalia: To reach a 16.8% rate of self-sufficiency from		
Benefits	photovoltaics by 2029		
Effects	Self-consumption of electricity from photovoltaics (GWh) To estimate self-consumption (and the consequent savings 16.8 16.8 16.8 16.8		
	due to non-purchase), energy production was reduced assuming necreating at energy for during the acid equal to		
	30% for DT, 10% for DBAV and DBIC and 0% for DBR 10.4 11.0 11.7 12.5		
	8.0 Reduction C0.; from 2029: 5.8 Approx. 4 601 top. C0.2		
	43 5.8 Approx4.600 ton CO2		
	0,0 0.2		
	2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2031 2032 Footprint: Relative to the energy demand avoided (scope 2)		
Effects (CO ₂)	Trenitalia: An approximately 4600 tons of CO2 reduction for 2029		
	(see picture above)		
	Fairly easy for buildings and newly built stations		
Ease of	More complex for existing stations		
implementation	Higher complexity for noise barriers		
Constraints,			
challenges, or	Land space constraints and maintenance expertise		
lessons learnt			
S/M/L term	RFI: Long-term implementation (~10 years)		
Efficiency	(Cost over effect)		
Maturity	Mature (solar panel technology)		
Mentioned by	Bane NOR, CFL, FS, Infrabel, SNCB/NMBS, SNCF, SBB		
Experience			
	An easy and quick solution to implement, and something every		
	company should focus on		
Comment	Solar systems have a typical 20-25-year warranty, 10 years for		
	inverters and they last much longer and require very little		
	maintenance		
	maintenance		

5.4.3. Practices for saving energy in stations, buildings, and workshops

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	High	High
Field	Energy consumption of buildings (stations, offices, workshops) Management and fine-tuning of the temperature and lighting Increase heating efficiency. Automated switch off/hibernation systems for lighting		
Solution	Proper heating/cooling management and avoiding or reducing energy consumption for lighting, screens and equipment		
Description	Measures to ensure a more efficient heating and lighting system inside and outside of the facilities Defining a set of best practices Deploying an internal communication operation		
Objective	Reduce energy consumption		
How to	 Moderate and auto cooling. 	matic management of	heating and

required Benefits Effects	Cost of studies, tests, and deploying the changes Energy: Trenitalia: Savings of up to 5 million euros per year for lighting and 300 thousand euros per year for air leaks SBB: For reduced station lighting: ~0.1-0.2MWh per day. For gas savings, a 15% reduction (~2-4GWh/a, 50% in 2023/24) due to switching the heating system in buildings. Optimising gas heating and operations resulted in a 2GWh energy saving
Costs and resources	 of rides Surplus fridges turned off Hot water supply shut off To save gas: switching from gas heating systems to oil-powered systems. Checking and optimising 116 buildings using gas powered heating Replace lighting (switch to LED) Renewal of amenities Reduce heating/cooling requirements. Between 20°C and 26°C, office buildings are neither heated nor cooled Definition of best practices Deployment of internal communication operations
	 only when necessary. In unused areas, lighting and machinery/equipment should be switched off SBB: Reduce lighting in the 30 largest stations. Applies to decorative lights such as facades or Christmas lighting. Basic lighting for health and safety is not reduced Reduce the automatic light switch-off countdown time to for offices Elevator controls are optimised to reduce the number
	 SNCF: Staff best practices Recommendations such as: 19°C for heating, turning off hot water, 26°C for cooling Shutting down energy sources outside of business hours Switching off screens outside of business hours Switching off screens outside of business hours Investments including:
	 Switching off/automatic switching off of lighting, screens, equipment as vending machines, printers, etc. SNCE: Staff heat practices

Effects (CO ₂)	Related to reduced energy consumption
Ease of implementation	Easy
Constraints, challenges, or lessons learnt	Definition of a set of good practices adapted to the local situation Education of the staff Monitoring of the energy consumption
S/M/L term	Short-term
Efficiency	-
Maturity	
Mentioned by	SNCF FS Trenitalia SBB
Experience	-
Comment	

5.4.4. Drone use for solar panel performance inspections and HVAC loss detection

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	High	High
Special note	Inventive solution		
Field	Heating losses and a	utonomous energy pro	duction
Solution	Drone use for solar p	anel inspections and h	eating loss detection
Description	satisfactory performa Broken cells may hin and it is possible to c drone	ave been developed to ince of solar panels in h der the energy product letect them using came	hard-to-reach areas. ion of these panels ras attached to the
Objective	Improve autonomous energy production by ensuring the best possible functioning of the solar panels and avoid heating losses		
How to	Through the use of unmanned aerial vehicles (UAVs)		
Costs and resources required	Pilot training and the sensors	cost of the unmanned	aerial vehicles and
Benefits Effects		detected through the u where maintenance is	
Effects (CO ₂)	Related to reduced e	nergy losses, thereby r	educing consumption
Ease of implementation	Easy, it can also be subcontracted		
Constraints, challenges, or lessons learnt	The main challenges will be related to drone flights over populated and/or confined areas, as regulation is very strict when flying over the former. Drones may be restricted to specific flight areas		
S/M/L term	Short-term		
Efficiency	High		
Maturity	Mature		

Mentioned byNS Stations is currently using unmanned aerial vehicles for purpose in stations	
Experience	The reported experience from NS Stations is positive
Comment	

5.4.5. Monitoring and benchmarking energy consumption in buildings

	Innovation	Ease/rapidity/aff.	Benefits	
Level	High	Medium	Medium	
Field	Real estate energy consumption			
Solution	BaneNOR: Benchmarking buildings and asset energy consumption			
Description	Within Bane NOR's Real Estate Division, the properties are equipped with an energy management system (EMS), which allows total and specific energy use to be tracked, with the use of district heating and water in the system also being followed-up. It also has ET-curve functionality which shows how much energy is used at different external temperatures. An ET-curve will therefore allow the performance of properties in different climates and time periods to be compared.			
Objective	Reduce the energ money	y consumption of propertion	es and thereby save	
How to	can be compared, buildings perform. usage for heating increase compara 600 kWh/m2 500 kWh/m2 400 kWh/m2 300 kWh/m2 100 kWh/m2	ere buildings based on kW to enable benchmarking It should also have an ET varies with the external te bility year after year.	on how different -curve since energy mperature. This is to Stasjoner Øst 01. Januar - 15. Desember	
Costs and resources required	Energy meters, so	ftware, development and	follow-ups	
Benefits Effects	Understand co Profile Patter	9		

	Identify saving potential		
	Aware control of energy flows		
	Notice savings due to proper control		
	 Set and reach [realistic] energy saving targets 		
	Control to avoid grid congestion, improving distribution		
	Adapt power management to the evolving electrification.		
	Higher levels of electrification require more visibility on		
	consumption		
Effects (CO ₂)	Footprint: Relating to a reduction in energy use.		
Ease of	Most buildings already have automatic energy meters, so only		
implementation	requires software to be installed		
Constraints,			
challenges, or			
lessons learnt			
S/M/L term	Medium/long-term		
Efficiency	(Cost over effect)		
Maturity	Mature		
	Bane NOR (In Norway by Equinor, several Norwegian		
Mentioned by	municipalities, Borregaard, Nortura, Agder Energy and many		
	more)		
Experience			
Comment			

5.4.6. Smart and efficient LED lighting

	Innovation	Ease/rapidity/aff.	Benefits
Level	High	Medium	High

Special note

Inventive solution

Field	Lighting consumption management			
Solution	 Upgrades to more efficient LED lighting to replace fluorescent/incandescent/ halogens/neon lighting Use/install smart devices to control lighting 			
Description	LED lighting is a technology that has proven to be more energy efficient and has a longer lifespan than halogen and incandescent bulbs. According to ProRail, replacing traditional fluorescent lighting with LEDs saves around 50% (increased to 75% if dimmed in the absence of passengers). Smart and automatic management, coupled with efficient lighting, extends the potential savings whenever lighting is not required at particular intervals Example: motion sensors in railway stations which automatically trigger lighting when movement is detected and turns off lighting after a period of time without movement Dimming control, etc.			
Objective	Reduce energy consumption related to artificial lighting by replacing bulbs with more efficient LED lights			
How to	Replace halogen, fluorescent and incandescent bulbs with LED lights. However, it is important to purchase lights with a good lifespan, because earlier LED technology had flaws where bulbs turned yellow or purple or began flickering. Therefore, ProRail			

	made sure to have a guaranteed lifespan requirement. The lighting's efficiency can be seen by its lowered light pollution and increased precision as shown by the Mantgum station in the Netherlands (courtesy of ProRail).
	Mantgum with lampposts with the old fluorescent fixtures. In the countryside, the station can be seen from far and wide.
	Mantgum with lampposts with LED fixtures (end of platform is dimmed). The new LED lights with barely any stray light to the surroundings. The linates the platform, not the hedge. A bit of light still reaches the trough, but that is due to the extremely narrow platforms here.
Costs and resources required	Acquiring the lighting and replacing the old ones Retrofitting fixtures instead of replacing them increases savings. Gains in terms of sustainability principally come from reusing casings/shades
	Energy:
Benefits Effects	FS RFI: LED bulbs use around 80% less energy than incandescent bulbs and 40% less than halogen, therefore energy consumption is significantly decreased ProRail: Halved station lighting related energy consumption. Reported energy intensity ranges from 0.15 to 6 Watts per meter squared illuminated, according to each location's needs (e.g., 4 and 6 for the train hall and waiting room or enclosed platform respectively and around 0.15 to 3 for passengers crossing sections) 43% reduction (137,000kWh [TBD for one station]) due to
	 FS RFI: LED bulbs use around 80% less energy than incandescent bulbs and 40% less than halogen, therefore energy consumption is significantly decreased ProRail: Halved station lighting related energy consumption. Reported energy intensity ranges from 0.15 to 6 Watts per meter squared illuminated, according to each location's needs (e.g., 4 and 6 for the train hall and waiting room or enclosed platform respectively and around 0.15 to 3 for passengers crossing sections) 43% reduction (137,000kWh [TBD for one station]) due to dimming over the initial six months Footprint: Related to reduced energy consumption and IT/NL's electricity mix
Effects Effects (CO ₂) Ease of	 FS RFI: LED bulbs use around 80% less energy than incandescent bulbs and 40% less than halogen, therefore energy consumption is significantly decreased ProRail: Halved station lighting related energy consumption. Reported energy intensity ranges from 0.15 to 6 Watts per meter squared illuminated, according to each location's needs (e.g., 4 and 6 for the train hall and waiting room or enclosed platform respectively and around 0.15 to 3 for passengers crossing sections) 43% reduction (137,000kWh [TBD for one station]) due to dimming over the initial six months Footprint: Related to reduced energy consumption and IT/NL's electricity mix Easy. However, the setup has to be thought out and optimised for
Effects Effects (CO ₂) Ease of implementation Constraints, challenges, or	 FS RFI: LED bulbs use around 80% less energy than incandescent bulbs and 40% less than halogen, therefore energy consumption is significantly decreased ProRail: Halved station lighting related energy consumption. Reported energy intensity ranges from 0.15 to 6 Watts per meter squared illuminated, according to each location's needs (e.g., 4 and 6 for the train hall and waiting room or enclosed platform respectively and around 0.15 to 3 for passengers crossing sections) 43% reduction (137,000kWh [TBD for one station]) due to dimming over the initial six months Footprint: Related to reduced energy consumption and IT/NL's electricity mix
Effects Effects (CO ₂) Ease of implementation Constraints,	 FS RFI: LED bulbs use around 80% less energy than incandescent bulbs and 40% less than halogen, therefore energy consumption is significantly decreased ProRail: Halved station lighting related energy consumption. Reported energy intensity ranges from 0.15 to 6 Watts per meter squared illuminated, according to each location's needs (e.g., 4 and 6 for the train hall and waiting room or enclosed platform respectively and around 0.15 to 3 for passengers crossing sections) 43% reduction (137,000kWh [TBD for one station]) due to dimming over the initial six months Footprint: Related to reduced energy consumption and IT/NL's electricity mix Easy. However, the setup has to be thought out and optimised for each station/building Avoiding lighting which is too strong, which decreases passenger comfort, as well as on the track, to avoid blinding drivers Medium/long-term implementation (due to the investment
Effects Effects (CO ₂) Ease of implementation Constraints, challenges, or lessons learnt S/M/L term	 FS RFI: LED bulbs use around 80% less energy than incandescent bulbs and 40% less than halogen, therefore energy consumption is significantly decreased ProRail: Halved station lighting related energy consumption. Reported energy intensity ranges from 0.15 to 6 Watts per meter squared illuminated, according to each location's needs (e.g., 4 and 6 for the train hall and waiting room or enclosed platform respectively and around 0.15 to 3 for passengers crossing sections) 43% reduction (137,000kWh [TBD for one station]) due to dimming over the initial six months Footprint: Related to reduced energy consumption and IT/NL's electricity mix Easy. However, the setup has to be thought out and optimised for each station/building Avoiding lighting which is too strong, which decreases passenger comfort, as well as on the track, to avoid blinding drivers Medium/long-term implementation (due to the investment planning requirements)
Effects Effects (CO ₂) Ease of implementation Constraints, challenges, or lessons learnt	 FS RFI: LED bulbs use around 80% less energy than incandescent bulbs and 40% less than halogen, therefore energy consumption is significantly decreased ProRail: Halved station lighting related energy consumption. Reported energy intensity ranges from 0.15 to 6 Watts per meter squared illuminated, according to each location's needs (e.g., 4 and 6 for the train hall and waiting room or enclosed platform respectively and around 0.15 to 3 for passengers crossing sections) 43% reduction (137,000kWh [TBD for one station]) due to dimming over the initial six months Footprint: Related to reduced energy consumption and IT/NL's electricity mix Easy. However, the setup has to be thought out and optimised for each station/building Avoiding lighting which is too strong, which decreases passenger comfort, as well as on the track, to avoid blinding drivers Medium/long-term implementation (due to the investment

	ProRail: LED with dimming on almost all platforms		
Experience	ProRail, NS (see report)		
Comment	ProRail's Lighting programme report should be read for more details and for information on good practice: https://www.spoorbeeld.nl/sites/default/files/2023- 07/Duurzaam%20licht%20op%20stations_enkele%20paginas_E NGELS_web.pdf		

5.4.7. Escalator, elevator, and conveyor system efficiency

	Innovation	Ease/rapidity/aff.	Benefits
Level	Medium	Low	Medium

	-		
Field	Conveyor systems		
Solution	Escalators equipped with Variable Speed Drives (VSD)		
oolution	Escalators and elevators equipped with regenerative systems		
	These should be fitted or upgraded with energy efficient drives		
Description	and should be intelligently controlled. Standardised solutions are		
	available in the market, but there is substantial potential still to be		
	exploited by the railways (UIC 2012)		
Objective	-		
How to	-		
Costs and	High		
resources	SBB: Escalators with energy recovery do not save enough to		
required	justify the switch, before an escalator's end of life of (expensive)		
Benefits	-		
Effects			
Effects (CO2)	-		
Ease of	_		
implementation Constraints.			
challenges or	Consider in new or renewal of assets		
lessons learnt			
S/M/L term	In line with asset renewal/new construction		
Efficiency	-		
Maturity	Standardised solutions are available in the market		
Mentioned by	SBB, UIC		
Experience	-		
Comment	-		

5.4.8. Contractual energy commitments and auditing for concessions/shops

	Innovation	Ease/rapidity/aff.	Benefits
Level	Low	Medium	Medium
Field	Value chain management		

Solution	 Defining moderate energy use clauses in concessions/shops on leasing contracts Sub-metering for accurate evaluation and billing 			
Description	Energy use should be billed based on real consumption using sub-metering. Efficiency benchmarking is possible with indicators for average energy consumption per m2 for different concession types (e.g., food shops, cafés/restaurants, non-food). Railway-owned shops could showcase the successful implementation of energy efficiency measures			
Objective	Incentivise good energy practices in tenants			
How to	Targets, incentives, and energy audits should be built into contracts.			
Costs and resources required	No capital cost. May reduce negotiation power and reduce rental market			
Benefits Effects	-			
Effects (CO2)	-			
Ease of implementation	Market dependant			
Constraints, challenges or lessons learnt	Tenant capacity			
S/M/L term	Short/medium depending on tenancy contract renewal and turnover			
Efficiency	-			
Maturity	-			
Mentioned by	UIC			
Experience	-			
Comment	-			

5.5. Processes

5.5.1. Staff: Communication, management, involving employees in energy saving behaviour

	Innovation	Ease/rapidity/at	ff. Benefits	
Level	Low	Medium	High	
Et al.	Change manageme	ent. Communication to	o staff	
Field	Education of staff, s	steps by staff		
	SNCF:			
		ving and eco-stabling		
	incentives, communication to staff, guides			
	 Deployment of an internal campaign to encourage 			
		saving behaviour	anagement of manual	
	switch heaters		anagement of manual	
	Trenitalia:			
		raining for eco-driving	q	
		management require		
			nption of lighting, heating,	
		and any other equipment		
	solar heating, LED lighting, and automated systems			
Solution		onise all staff work he		
	o Synchro product		s in line with solar power	
	• SBB:			
		rvey to assess poter	ntial energy saving	
	measur		and for operational staff	
		cific fleets	ons for operational staff	
	NR:			
		ue with operational sta	aff. audits	
		entation of energy sa		
	operatio	onal staff	-	
	Infrabel			
			sed for energy saving	
		awareness		
			or instructors to make	
			nd (for runs without real use of electric braking	
Description		ations on all services		
			, in order to make drivers	
			ise of electric braking	
	approaching the		5	

-			
Objective	Decrease energy consumption by enhancing communication, training staff and encouraging members of the organisations to suggest new solutions		
	Increase communication and information through the different organisation's departments		
How to	Make staff from different departments proactive by encouraging them to propose areas/activities in which they have spotted potential energy saving solutions		
Costs and resources required	Low - The main costs would be related to staff training, if any		
Benefits Effects	 Trenitalia: expected benefits from 2024, potential savings ~1%, according to data from literature 		
Effects (CO2)	Related to reduced energy consumption		
Ease of implementation	high		
Constraints, challenges, or lessons learnt	Behavioural change and potential staff resistance		
S/M/L term	Short-term		
Efficiency	High		
Maturity	Mature		
Mentioned by	SNCF, RFI, Trenitalia, SBB, Network Rail, and Infrabel are some of the members who have reported solutions related to staff engagement		
Experience	Very good – benefit of staff engagement and satisfaction		
Comment	-		

5.5.2. Management activities – cleaning

	Innovation	Ease/rapidity/aff.	Benefits
Level	Low	High	Medium

Field	Increase efficiency	
Solution	 Cleaning skylights/normal windows for savings in lighting and heating Cleaning solar panels for optimal efficiency 	
Description Dirty skylight or windows may reduce the amount of natural li inside facilities Additionally, dirty solar panels produce less energy than thos that are clean		
Objective	Increase efficiency through regular cleaning	
How to	Cleaning skylights/normal windows in facilities/stations and solar panels on roofs or in photovoltaic power plants	
Costs and resources required	Subcontracting costs for cleaning services	
Benefits Effects	The need for artificial lighting will decrease alongside the associated energy consumption. For solar panels, efficiency is increased when they are clean, subsequently increasing energy production	
Effects (CO ₂)	Related to reduced energy consumption	

Ease of implementation	Very easy
Constraints, challenges, or lessons learnt	
S/M/L term	Short-term
Efficiency	High
Maturity	Mature
Mentioned by	FS Trenitalia
Experience	Good
Comment	

6. European research and innovation project solutions

Several recent European rail research and innovation projects under the Horizon 2020 European Research Framework Programme, and included in the Shiftt2Rail Joint Undertaking Work Programme, have focused on energy saving solutions for the rail transport system and arrived at important conclusions for ways to save energy in rail.

Similarly, the ongoing Europe's Rail Flagship Project 4 RAIL4EARTH (https://projects.rail-research.europa.eu/eurail-fp4/), that started in December 2022, aims at improving current railway performance in terms of sustainability, to build a more attractive and resilient transport mode and to contribute towards the objectives of a climate neutral Europe for 2050. The activities of this project cover rolling stock, infrastructure, stations, and all of their related subsystems (traction, bogies, brakes, energy storage systems, HVAC, etc.).

6.1. Shift2Rail

The most relevant Shift2Rail projects dealing with energy savings solutions are:

- FINE 1 project Future Improvement for Energy and Noise <u>https://projects.shift2rail.org/s2r_ipcc_n.aspx?p=FINE%201</u>,
- FINE 2 project Furthering Improvements in Integrated Mobility Management (I2M), Noise and Vibration and Energy in Shift2Rail <u>https://projects.shift2rail.org/s2r_ipcc_n.aspx?p=fine-2</u>,
- IN2RAIL project Innovative Intelligent Rail <u>http://www.in2rail.eu/</u>
- IN2STEMPO project Innovative Solutions in Future Stations, Energy Metering and Power Supply <u>https://projects.shift2rail.org/s2r_ip3_n.aspx?p=IN2stempo</u>,
- OPEUS project Modelling and strategies for the assessment and Optimisation of Energy Usage aspects of rail innovation <u>OPEUS (shift2rail.org)</u>
- RECET4RAIL project Reliable Energy and Cost-Efficient Traction system for Railway <u>https://recet4rail.eu/</u>

Other Shift2Rail projects have also contributed to the development of energy saving solutions and are identified in the catalogue of solutions (see 0

Energy saving measures).

The (non-exhaustive) list below presents some of the main conclusions of these projects regarding energy saving in rail, these being to:

- Encourage rail operators to produce and/or use certified zero-carbon renewable energy
- Pair power network management and railway grids to avoid the superfluous creation of infrastructure and reduce transmission losses
- Create direct links between renewable energy suppliers, consumers, and energy storage systems on the network (railways can have both roles) to avoid overproduction and therefore reduce energy wastage
- Optimise regular traffic flows by avoiding unnecessary stops through the use of connected traffic management systems
- Continue developing intelligent resources and management based on the principles of a circular economy
- Provide reinforced eco-drive training and in-cab driver energy consumption advisory systems

The following table also shows a specific set of solutions for implementing new technology, such as Silicon Carbide and composite materials for rolling stock:

FINEI	S2R selected er	nergy related activ	ities
σ	Торіс	Future (S2R) technology	Application field
TD 1.1 Traction	, , , ,	Medium frequency transformer with electronic convert Silicium Carbid (SiC) converter Indipendently rotating wheel with gearless synchronous	Regional All segments High speed
T 4 8	motor-wheel-sy stem Parking Mode Energy storage	motor with permanent magnets Noise and energy reduction means in parking mode Battery drive for no re lectrified lines	Regional Regional
TD 1.3 Car body shell TD 1.4	Car body shell Running gear	Composite carbody shell with fiber reinforced plastic Lightweight running gear with new materials and	All segments
Runninggear TD 3.9 Smart Power Supply	Double fed power supply for 50Hz ov erhead lines	concepts Double fed power supply for 50Hz overhead lines with a increased substation distance and no switches for separaration of overhead line sections	All segments
TD 5.3	Track-side energy storage	High speed freightwaggon (120 - 160 km/h) with	
Waggondesign	High speed freightwaggon	reduced weight, improved aerodynamic, electrification and automatic coupling	Freight mainline
TD 5.4 Novel Terminal, Hubs, Marshallingyards, Sidings	locomotive	Hybrid shunting locomotive with small diesel engine an Li-Ion traction batteries	
TD 5.5 New freight propulsion concep		Electric mainline locomotive with powerful diesel and Li Ion battery Electric mainline locomotive with Lilon battery for last mile Connected DAS considering real time traffic informatic	Freight mainline
TD 5.6 Autonomous train operation	Automatic train operation (ATO)	Automatic train operation (ATO)	Freight

Figure 31: Set of innovative solutions by field, as identified for the FINE1 project's technical demonstrators (TDs), and rail service it would apply to

Additionally, S2R created a catalogue of solutions resulting from the research and innovation across all its innovation programmes (IPs). The solutions are listed in Table 6 below, and further details for each solutions can be found in the published catalogue.

Moreover the solutions of the Shift2Rail catalogue of solutions have been assessed and the ones having a higher potential in terms of energy savings have been included in the part ${\cal O}$

Energy saving measures of this report.

```
Table 6: Shift2Rail: Catalogue of solutions by category (Shift2Rail, 2022)
```

1	Passenger trains Cost-efficient and reliable trains, including high-capacitytrains and high-speed trains
Tractic	on systems
	Solution 1. Master Silicon Carbide (SiC) semiconductors
-	Solution 2. High Speed Motor on wheel
-	: Control Management System (TCMS)
	Solution 3. Next Generation TCMS - New Vehicle Control Unit
	unication systems
	Solution 4. Standardised train-to-ground communication system
	structures
	Solution 5. Light car bodies
	Solution 6. Door leaves
S	Solution 7. Composite door leaves
	Solution 8. New door functions towards autonomous doors
S	Colution 9. Boarding aid
S	Solution 10. Lightweight Antenna Supporting Element
Light r	running gear
S	Solution 11. Lightweight axle
S	Solution 12. Austempered Ductile Iron (ADI) spoke wheel
S	Solution 13. Light Running Gear frame
Condit	tion based maintenance
S	Solution 14. Health Monitoring Systems for Condition-Based Maintenance (bogie and track)
Brakin	ig systems
S	Colution 15. Electromechanical brake System (EMB)
S	Solution 16. Adhesion management solutions
S	Solution 17. Adhesion management advanced solutions
S	Solution 18. High-SIL brake control
S	Solution 19. Innovative friction pair
Interio	brs
S	Solution 20. Passengers' room adapted to their needs
-	Solution 21. Driver's Cabin
	iendly HVAC
S	Solution 22. Eco-friendly air conditioning with natural refrigerant

Traffic management

Advanced Traffic Management and Control Systems' Solutions

ERTMS Next Generation Solution 23. Automatic Train Operation (up to GoA4) Solution 24. Moving Block Solution 25. Fail-Safe Train Positioning Solution 26. Adaptable communication system Solution 27. Integrated Mobility Management (I2M + TMS) Solution 28. Onboard train integrity

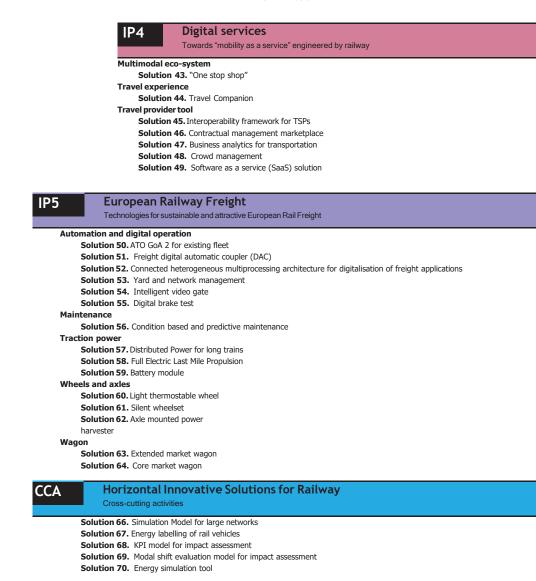
Optimised Infrastructure Intelligent Asset Management and High Capacity Infrastructure

Long performing structures

- Solution 29. Low-cost high-speed bridges
- Solution 30. Long performing structures

Track system

Solution 31. Enhanced switches and crossings Solution 32. High performance wheel-rail interaction


Maintenance

- Solution 34. Data for Track Circuit Maintenance
- Solution 35. Data & Positioning: Lean Tamping
- Solution 36. Automation: Robot platform
- Solution 37. Integrated measuring system
- Solution 38. Decision making planning
- Solution 39. Modular multitasking powered exoskeleton (MMPE) for rail workers

Energy

Solution 40. Smart Energy Metering Solution 41. Automation: Robot platform Solution 42. Smart control of rail power supply

6.2. Europe's Rail – RAIL4EARTH project

To achieve the target operational outcomes in Europe's Rail, several technical improvements were identified by the RAIL4EARTH project.

To develop flagship demonstrations for each enabler, some functions must be delivered with enough maturity, with a target technology readiness level (TRL) as given below.

Enabler 1	Trains with on-board Energy Storage Systems. High performance and
	high-efficient Battery Electric Multiple Unit (BEMU) trains with long

	autonomy (80km baseline and over 200km target) and suburban catenary trains with high levels of braking energy recuperation and energy autonomy (TRL6/7 to be achieved in 2026).
Enabler 2	Hybrid hydrogen trains – infrastructure inspections/maintenance of heavy-duty vehicles and locomotives for freight/passengers at TRL5/6 (powered with H2 gas or liquid H2).
Enabler 3	The application of solutions for the production, storage and refuelling of hydrogen for railway vehicles using the example of a prototype refuelling station. Development of a standard refuelling interface using algorithms to ensure the optimum time and safety of the process, as well as provide scalability and future growth for the refuelling station, depending on the demand for hydrogen (TRL6 target for 2025).
Enabler 4	Integrate various sources in different systems (e.g., 25kV AC, 1.5/3kV DC), including renewable energy, energy harvesting technologies, superconducting, braking energy recuperation, etc, as well as the integration of energy storage (TRL6 target for 2025).
Enabler 5	Solutions for optimal energy management in the whole power system, covering traction and non-traction demand, including stations being used as energy hubs and integrated in a smart grid according to the market rules (TRL5 target for 2025).
Enabler 6	Increase adaptation to climate change with the development of a tool on European climate variables, which is usable for railway assets, considering risk assessment reports and the benchmarking of existing solutions to accelerate a reduction in the environmental impact had (TRL5 for 2025 to implement adaptation strategies).
Enabler 7	Develop noise indicators, simulation tools, optimised components and optimised maintenance regimes for noise and vibrations, also taking different climates within the EU into account (TRL6 target for 2025).
Enabler 8	Methodologies and guidelines for an optimised redesign/rehabilitation of station layouts, including modularity oriented towards carbon footprint reduction (TRL5/6 in 2025).
Enabler 9	Develop tools and indicators to promote sustainable designs, assess improvements in environmental performance and ensure the standardised reporting of the rail sector's environmental impacts (TRL5 in 2025).
Enabler 10	Develop and introduce electro-mechanical braking systems, pantographs, and suspension to the market, while targeting energy

	savings on the relevant subsystems and reduce associated maintenance costs by reaching TRL6 for 2025 and preparing for later developments.
Enabler 11	Introduce optimised motors and gearboxes, high performance bogies, suspension and new materials following the principles of a circular economy (reaching TRL6 in 2025).
Enabler 12	Deliver alternative technologies to replace HVAC system hydrofluorocarbon refrigerants with green refrigerants or new cooling technologies with reduced energy consumption (TRL6 target for 2025).
Enabler 13	Introduce enhanced experimental and numerical methodologies on aerodynamic certifications (TRL6 by 2025).
Enabler 14	Demonstrate a healthier environment within rail vehicles (TRL7 target for 2025).
Enabler 15	Reinforce appeal via on-demand comfort for users such as improved access, lighting, thermal and acoustic conditions, as well as with new architecture to increase passenger capacity (TRL5/6 target for 2025). Enabler 15 deals with light interiors that could lead to increased capacity, while the new modular interior will also balance passenger- oriented customisation with current standards, in order to increase on-demand passenger comfort.
Enabler 16	Reinforce the ability to adapt rolling stock interiors to support the rolling stock capacity increases (TRL5/6 target for 2025).

6.3. Energy saving measures identified vs European R&I activities

The table below presents an analysis of the solutions introduced in section 5 of this report alongside solutions developed in the Shift2Rail projects or currently under development in Europe's Rail Flagship Project 4 RAIL4EARTH.

Solutions introduced in section 5	<u>Shift2Rail – Europe's Rail</u>
Rolling	g Stock

 Maximise braking energy recuperation by optimising the braking system Heat pumps for enhanced HVAC efficiency Dry transformers Hydro-elastomeric axle-guide bearings Optimised traction inverters Renew rolling stock equipment Thermal efficiency and insulation of rolling stock Aerodynamic efficiency of rolling stock Rolling stock refurbishment and fleet renewal 	 Substitute diesel trains with electrical, battery or hydrogen trains (regional, high-speed and freight locomotives) Retrofit diesel trains as battery or hydrogen trains Silicon Carbide converters Extended freight market with improved aerodynamics Optimised container sequences for intermodal freight trains
--	--

	<u>Oper</u>	ations
	Use the most efficient trains for operations	Shift2Rail projects
2. 3.	Eco-driving – saving traction energy Driving assistance tools, Driving Advisory Systems (DAS) and Automatic Train Operation (ERTMS/ATO)	 Optimised Driving Connected to DAS Automatic Train Operation Traffic management
4.	Partial equipment ue: adapt equipment use to the required load/needs	 Further developments in Europe's Rail Energy management of battery and hydrogen trains
5.	Interval operation of traction coolant pumps in parking mode	
6.		
7.	Weather-forecast-linked predictive HVAC management	
8.		

9.	Timetable-based maintenance	

<u></u>	tructure
 Optimise switch/point heating systems Redesign rotating converters as high voltage converters to reduce losses Replace rotating converters with static converters to reduce losses Redesign supply stations to reduce energy losses Smart management of rotating converters to reduce losses Upgrade to automatic electric switch/point heaters Staff training on efficiently managing manual switch heaters Upgrade to automatic electric switch/point heaters Upgrade to automatic electric switch/point heaters Implement a more efficient uninterruptible power supply system for signalling Switch to a 30kV supply instead of 15kV Power management of switch heating Infrastructure manager information to railway undertakings: increase the awareness of operators regarding more efficient driving and a reduction in consumption when stabled Meteorology linked predictive and automatic switch/point heating Meteorology linked predictive and automatic switch/point heating Meteorology linked predictive and automatic switch/point heating Install energy recovery systems in 3kV DC railway lines 	 Shift2Rail projects Electrical energy supply from renewable resources Further electrification of railway lines Infrastructure for battery and hydrogen trains Charging stations External energy for stations and platforms Hydrogen refuelling stations Eurther developments in Europe's Rail Standardisation of interfaces for battery and hydrogen trains

7. Regulations: Constraints and challenges

This report has given and assessed the potential energy saving measures according to their estimated cost in terms of time, money, and effort weighted against the benefits they offer.

This section deals with the potential impact of these saving measures on the EU TSI regulations.

- ENE: Energy
- INF: Infrastructure
- LOC & PAS: Rolling stock, locomotives, and passengers
- WAG Wagons
- NOI: Noise
- SRT: Safety in railway tunnels
- CCS: Control command and signalling
- PRM: Persons with disabilities and with reduced mobility
- OPE: Operation and traffic management
- TAP: Telematic applications for passenger service
- TAF: Telematic applications for freight service

It then explains the necessity for the System Pillar Task 1 (aiming to select improvements to be implemented for standardising specifications) to provide information in a future deliverable on the impact of these solutions on the future railway system architecture.

The UIC Taskforce members also highlighted the challenges in terms of energy supply and purchase policies, as discussed during the workshop (see the introduction of the catalogue 5 Energy saving measures), which are summarised in section 7.1 Energy supply and purchase.

Potential impact on the EU TSI regulations

The concepts and issues discussed in this document mainly concern four subsystems:

- Locomotive and passenger (rolling stock)
- Energy in infrastructure
- Operation
- Buildings

If we consider the traction power supply system and its interface traction units, the European technical regulation/standardisation framework shall be adhered to using the following documents (at a minimum) in terms of methodology and requirements:

- TSIs

- EN 50367⁸, EN 50388⁹, EN 50163¹⁰, EN 50463¹¹ The compatibility of the different innovative solutions identified in section O

10 EN 50163: Supply voltages of traction systems

⁸ EN 50367: Fixed installations and rolling stock - Criteria to achieve technical compatibility between pantographs and overhead contact line

⁹ EN 50388: Power supply and rolling stock - Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability

¹¹ EN 50463; Energy measurement on board trains - Part 2: Energy measuring

Energy saving measures for each subsystem (Rolling Stock, Operation, Infrastructure, Buildings) with the TSIs and European standards was analysed. The main aim was to identify if the current technical regulatory framework defined by the TSIs and European standards would prevent the implementation of an innovative solution:

- Would the innovative solution require a change or more specifications in the TSI(s)?
- Are the TSIs preventing any of their implementation or explicitly allowing it?

Rolling Stock: See appendix 3-1 with constraints and challenges on energy saving measures

Operation: See appendix 3-2 with constraints and challenges on energy saving measures

Infrastructure: See appendix 3-3 with constraints and challenges on energy saving measures

Buildings: See appendix 3.4 with constraints and challenges on energy saving measures.

In a nutshell, only four of the given solutions would have an impact on a TSI (from the Infrastructure subgroup), meaning that the current TSI would not facilitate their deployment:

- 5.3.3 Supply structure/neutral sections; TSI ENE,
- 5.3.4 Infrastructure manager information for railway undertakings: increase the operator awareness regarding more efficient driving and consumption at standstill; TSI ENE and TSI LOC&PAS,

5.3.9 Recovered braking energy: optimal management5.3.17 Medium voltage direct current electrification systems

For these four innovative solutions, research and development can result in the establishment of different and new parameters and values. As soon as a new concept is approved, the interoperability directive and related TSIs explain how to proceed via a procedure named "innovative solutions", which needs a "request for technical opinion" (i.e. article 10 of TSI Energy).

Once this process has been followed, and the technical request approved, the new concept is declared interoperable. For serious changes or evolutions, such as a new voltage system, a change request shall be drafted. This Change Request will be then addressed and assessed within the respective Topical Working Groups of the European Union Agency for Railways (ERA). Depending on the outcome of the working group, the change could be implemented in the next TSIs revision, and the subject shall be worked on within ERA's working groups.

It means that everything is possible provided that the concept is validated against the six essential requirements and cost-benefit analysis.

Impact on the future railway system architecture

The implementation of certain solutions given in this report may have an effect on some EU TSI regulations. In addition, as some TSI regulations interface with one another (see Figure 32), data exchange between the various subsystems of the railway system architecture could be impacted, which is why the System Pillar Task 1 will assess this influence on the future architecture in an upcoming deliverable.

Nevertheless, these innovations will have a benefit on the performance of the future railway system architecture.

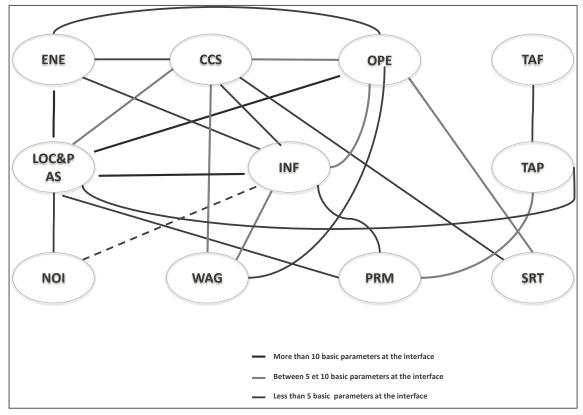


Figure 32: TSI interface map

7.1. Energy supply and purchase

Energy contract management, as explained from the workshop when introducing 5

Energy saving measures, varies from country to country.

Regulations should allow setups where energy procurement is taken care of by the railway operators themselves. In Spain, the procurement role is being shifted from IMs to the different operators.

When it comes to integrating renewable energy, it was highlighted that individual member states may interpret Article 38 of Directive (EU) 2019/944 differently.

The implications of this varying interpretation on the possibility of integrating renewable energy production and energy storage facilities into the traction grid are that the electricity grid of an IM (including the overhead contact lines) must be considered to be a closed distribution system (CDS) (Article 38 of Directive (EU) 2019/944 amending Directive 2012/27/EU).

Member states are interpreting this article differently. In some countries the IM is considered to be a CDS, in other countries the IM has a specific status, and in other member states again Directive 2019/944 is not considered to be applicable to IMs.

If an IM is considered to be a CDS, then the regulator within the member state must exempt the IM from a number of requirements that prohibit activity development, such as:

- Flexibility services
- Recharging points for electric vehicles
- Energy storage facilities

If an IM is considered to be a distribution system operator (which includes CDS status), then the IM is considered to be a vertical integrated undertaking. In this case, the member state can decide not to apply certain obligations (Article 35). However, not all member states have used this application.

It is not clear if an IM can sell this electricity to railway undertakings, which is important as an IM has a more limited electricity consumption than a railway undertaking. A long-term agreement between an IM and railway undertaking is also necessary, as an investment in a renewable energy installation requires 10 to 15 years to be profitable.

7.2. International traffic

Increasing seamless international operations is a sought goal by railways. Since traction energy represents high amounts, a specific challenge is the harmonisation of energy settlement processes between operators and infrastructure managers, using both estimations and energy measurement data. The more efficient and transparent this process will be, the more international services will be delivered (see 5.2.6

Using energy measurement data). Implementation of energy measurement systems in undergoing across European operators. Energy measurement data will more and more be collected by the settlement services of each settlement area, and it will enable

more efficient energy consumption benchmarking and international operation (More information in the sector declaration <u>https://www.cer.be/cer-agreements-resolutions/eu-rail-sector-declaration-on-traction-energy-metering-and-settlement</u>)

7.3. Deployment and evolution of DAS towards ATO

The standards for a clear interface between Driving Advisory Systems (DAS) and Automatic Train Operation (ATO)

The railways are in the process of rolling out Full Supervision ETCS, which will enable ERTMS/ATO. This is a game changer for railways, as it will increase capacity, punctuality, energy efficiency and safety. This is a (very) long-term work (forecast to implement is 2030 and later for some countries). In the meantime, railways need to improve efficiency of operation and timetabling with available ERTMS/ATO features.

Plus, onboard ETCS equipment must be updated. One major challenge for the railways is to understand how to develop, implement, and benefit from DAS (see *5.2.3 Driving assistance tools, Driving Advisory Systems (DAS) and Automatic Train Operation (ERTMS/ATO)*), as the first step towards having ATO, without losing what was built for DAS, as ATO specifications are released.

One important challenge is that there is often more than one operator and IM by country and substantial cross-border traffic. Therefore, to enable a unified and efficient connection of the multiple DAS to multiple traffic management (with connected DAS, also cross-border), and getting the benefits of real-time traffic management, it is important that an operator can seamlessly switch from one IM DAS service to another (also in a cost-effective way short-term).

8. Discussion on the incentives and challenges for implementation

This section addresses the challenges and support needed for railways to implement and accelerate energy saving solutions.

The implementation of energy efficient and energy saving measures is especially driven by current electricity costs and risk regarding future energy scarcity. However, the EU Directives and national regulation on decarbonisation can significantly constrain railways when they are faced with uncertainty in terms of profitability.

Information and metering

As not all consumption points or traction units are covered by energy meters, and therefore, energy usage information is regularly based on aggregated levels from models and assumptions. Through better data and information systems, data sharing and sub-metering, the energy use and loses could be better understood and efficiency opportunities easier identified.

Industry structure challenges

Due to the business model and organisational structure of many railways, the investment costs and benefits from energy efficiency are not always clear. In some instances, the entity that must make the investment, may not be the same entity that will enjoy the energy saving. For example, there is extensive costs to an Infrastructure manager to straighten or adjusting track curves but the energy saving cost reduction will be a benefit of the train operators. The same is the case for providing C-DAS data. There would need to be a particular incentive or funding available for an infrastructure manager to make this investment for the benefit of the wider rail industry.

The pay-back period, uncertainty and change

A barrier identified is a focus on moderate initial investment and a preference for short payback times. Larger capital investments with long term pay back periods are difficult to build a business case for despite significant energy savings that can be achieved taking a longer time for return on investment. Some of the advanced energy saving technology solutions have a high capital cost.

Adopting new technology (often on a large scale for railways) can also be challenging due to uncertainty surrounding return on investment, which is why support from governments and European funds and policies is so important. On a more detailed level, each solution from this report could have an impact on operations which may pose a challenge. The impact can range from being very limited, as it deals with a very specific part/piece of equipment, to being very large, e.g., in terms of timetabling because it requires other changes in the rail operations.

Aside from the impact of work to implement a change, there is also the impact of the change itself, as it may influence the way customers choose to organise and use train services. Timetabling is one of the main concerns that conflicts with the most efficient use of energy.

Human resources and factors

A known constraint is the lack of internal human resources and expertise to coordinate energy saving projects. Building the business case for such an investment can be resource demanding and the processes can take significant periods of time before decisions can be made. There is a constraint also on the expertise needed to implement the projects. Retraining and capacity building requirements demand time from railways staff, which is particularly challenging for those rostered and operational critical such as drivers.

Since train traction has the highest consumption, it is important to highlight that the human factor remains a central challenge to achieving savings on traction through eco-driving and advisory systems. Much of the time, this issue applies to any energy savings that require manual interaction (i.e., whenever system is not automatic). Behavioural change programmes can be difficult to negotiate and implement and require the engagement and acceptance of the workforce.

Customer comfort

Meeting customer comfort and convenience is central for passenger services, and this can conflict with energy saving on topics such as heating, cooling, ventilation, and timetabling. Automated systems may offer a solution, but upgrades of these systems can be expensive and prevent the railways from making the most out of the equipment's lifespan.

Customer information and advertising can help to explain changes in the train temperatures and prevent complaint.

Equipment lifespan

The long lifespan of railway assets is strength for railways to be more sustainable and resource efficiency, but this can also be a challenge when it comes to introducing state-of-the-art or innovative technology. As rolling stock has a life span of more than 30 years, the renewal and replacement with modern energy efficient systems is a slow transition.

Energy production

Partnering with distribution and transmission operators (DSO/TSO) with a given country is beneficial, given the scale of the electricity network needed for rail. Renewable and recuperated energy from train brakes gives railways, DSOs, and TSOs are a further reason to work together for an efficient management of transmission infrastructure. This should consider demand/load management, including smart

management with energy storage systems, enabling reduced use of fossil-based electricity production in the long run.

In this sense, it is also important for a railway company to understand to what extent it can and should be an energy supplier or partner with energy sector players. In Europe, there is a good range of examples where the railways and energy production that are entirely separate, and equally, where railway companies also play a very important role in energy generation. Thus, it is useful for policies to properly consider this ability, and incentivise, and foster it to help the energy market to decarbonise and extend capacity, while in parallel moving to smarter grids.

Decarbonisation and phasing out fossil fuels

Decarbonisation will only be achieved by phasing out diesel traction, which can also impact profitability, as alternative technology may not yet be able to offer the same ranges for operation and may have higher costs. Additionally, there is a high risk for rail when implementing innovative (and not entirely mature) solutions (e.g. hydrogen), even on a small scale (lifespan, operational constraints). Therefore, it would require incentives, partnerships, or public funding to mitigate unexpected failures or additional expenses which would have a widespread impact on operations.

Where could European rail activities and research be strengthened?

The availability of a railway line has been demonstrated to stimulate economic growth and avoid greenhouse gas emissions from road use. Therefore, it is a benefit to society for railways to provide services when profitability is not their principal concern. Rail should have state-of-the-art operation efficiency, and circular economy practices. For this reason, some companies across Europe have been considering reopening smaller parts of their network, as they can be covered by small battery trains and are a good step to more efficient operations and to decarbonisation.

Given the lifespan of rail equipment, it is important that all research and innovation is carried out with regard to the long-term and large-scale needs of railways, meaning that upgrades should be developed that initially do not require equipment changes, with subsequent innovation that:

- Is future-proof (long-term maturity)
- Can be quickly implemented at a moderate cost
- Is convenient for a large-scale deployment

Whenever planning is possible, and when railways adopt environmentally friendly (efficient or emission-free) systems, this should be acknowledged and supported via

subsidies and green investments. Railways should be eligible for carbon credit grants for decarbonisation and avoided emissions from modal shift.

Priorities for implementation/deployment programmes

programmes

Current priorities for European train operators are to:

- Save traction energy by rapid implementation of eco-driving, eco-parking, and driving tools
- Deploy energy measurement systems in trains for accurate information and settlement (including cross-border)
- Phase out diesel traction by using alternative traction systems. As stated above, rolling stock has a long lifespan, therefore, the strategy is to:
 - 1. Retrofit internal combustion engines to use renewable fuels, or fuels with a lower impact as a transitional solution
 - 2. Upgrade rolling stock and deploy:
 - 2.1. Hybrid battery/combustion engine trains (usually also with a pantograph) as a transition step, fully electric battery trains, with a proper balance between battery size and electric infrastructure
 - 2.2. Whenever batteries are not a solution due to a line's length (e.g., more than 100km without charging capabilities), hydrogen traction should be explored

Nevertheless, these pose new challenges and research questions:

For 1: The proper definition of "renewable" for fuels. Which synthetic fuels can be considered renewable? And what is their availability for operation?

For 2.1: Knowing the proper battery technology for efficiency, safety, energy density and sustainability (controversial materials and production footprint), where proper sustainability assessments like Life Cycle Analysis (LCA) would help railways in their decision making.

For 2.2: Green hydrogen sourcing, efficiency of the electrolysis, storage, and supply.

On the other hand, Infrastructure Managers focus on:

- Having the most efficient timetabling, peak power demand management and reduced transmission losses. As illustrated by the solutions, the is also linked to effective timetable management (use of recovered energy, asynchronous traction efforts, etc)
- Offering an efficient settlement system according to the requirements described in the Sector Declaration¹²

¹² https://www.cer.be/cer-agreements-resolutions/eu-rail-sector-declaration-on-tractionenergy-metering-and-settlement

- Extending in-house power generation with renewable energy on assets, stations, and buildings
- Phasing out gas or fossil fuel dependent systems, such as large heaters, switch heaters, etc. Making the most efficient use of energy-intensive electric systems with automated management

This extensive set of priorities makes it understandable that human resources might be an issue for railways in terms of improving core business and may push them to consider solutions that are not state-of-the-art.

9. Conclusion

Railways have an important role as a collective mode of transport. Energy consumption will always be high and is expected to grow with European targets to grow the market share of rail and increase electrification on the network to phase out the use of fossil fuels. As a consequence, railways have the responsibility to operate with optimal energy efficiency.

This report presents different approaches for a comprehensive energy saving strategy and at the same time demonstrates the efforts railways are putting in to keep energy efficiency at its optimal level. Some of the greatest savings can be found in traction energy and rolling stock including driving behaviours and optimal acceleration ad breaking patterns.

As highlighted, the railways need reasonable support from governments and within policy to achieve their highest level of efficiency including investments to make longer term savings.

Improvement made by railways is beneficial to many parties and people, and as projects are often long-term, this report highlights some of the simple solutions that can be quickly applied or have been taken from other domains (buildings, ICT, etc...).

Reference documents

A. González-Gil, R. Palacin, P. Batty, J.P. Powell, A systems approach to reduce urban rail energy consumption, Energy Conversion and Management, Volume 80, 2014, Pages 509-524, ISSN 0196-8904, <u>https://doi.org/10.1016/j.enconman.2014.01.060</u>. (https://www.sciencedirect.com/science/article/pii/S0196890414001058)

FINE1 OPEUS (Modelling and strategies for the assessment and OPtimisation of Energy USage aspects of rail innovation) D4.1 DAS assessment, D7.1 Overview or urban and mainline energy consumption, D7.2 Position paper <u>https://opeus-project.eu/#Deliverables</u>

Rail magazines:

- Elektrische Bahnen (DE)
- Revue Générale de Chemins de fer (FR)

Heather Douglas, Clive Roberts, Stuart Hillmansen, Felix Schmid, *An assessment of available measures to reduce traction energy use in railway networks*, Energy Conversion and Management, Volume 106, 2015, https://doi.org/10.1016/j.enconman.2015.10.053

Jiqiang Niu, Yang Sui, Qiujun Yu, Xiaoling Cao, Yanping Yuan, Aerodynamics of railway train/tunnel system: A review of recent research, Energy and Built Environment, Volume 1, Issue 4, 2020, Pages 351-375, ISSN 2666-1233, https://doi.org/10.1016/j.enbenv.2020.03.003.

M.M Pigeaud, ProRail, Sustainable Light at Railway Stations 7 years of policy, light design and realisation, 2022,

https://issuu.com/bureauspoorbouwmeester/docs/duurzaam_licht_op_stations_engels ______issuu_hrhttps://www.spoorbeeld.nl/sites/default/files/2023-_______07/Duurzaam%20licht%20op%20stations_enkele%20paginas_ENGELS_web.pdf

Shift2Rail – Catalogue of solutions, 2022 https://rail-research.europa.eu/publications/catalogue-of-solutions-2022-edition/

UIC <u>IRS 90940</u>:2022 Data exchange with DAS following the SFERA protocol https://shop.uic.org/en/4-intelligence/14282-digitalisation-data-emerging-innovations-

exchange-of-data-data-exchange-with-driver-advisory-systems-das-following-the-sfera-protocol.html

UIC - FFE Technologies and potential developments for energy efficiency and CO2 reductions in rail systems, 2017. <u>https://uic.org/sustainability/energy-efficiency-and-co2-emissions/</u>

UIC - IZT - Macroplan Non-traction energy consumption UIC Study, June 2012. https://uic.org/sustainability/energy-efficiency-and-co2-emissions/

Appendix 1 UIC Energy Saving Taskforce participants and contributors

ADIF
ALSTOM
Bane NOR SF
CFL
CFL Cargo
CFL Multimodal
Chennai Metro Rail Limited
Crossrail Benelux NV
CRRC-ZIC
DSB
East Japan Railway Company
EUSKAL TRENBIDE SAREA
Ferrocarrils de la Generalitat de Catalunya
FS ITALIANE S.p.A.
Infrabel
Infraestruturas de Portugal SA
Infrastructure of Serbian Railways" JSC
Jernhusen
KORAIL
MERCITALIA Logistics S.p.A.
Network Rail
NMBS
NS
ÖBB-Infrastruktur AG
ONCF
PGE (PKP Energetyka)
ProRail
RENFE Operadora
RFI S.p.A.
RSSB
RTE
SBB AG
SCR" CJSC
Siemens Mobility GmbH
SNCF
SNTFM "CFR Marfa" SA
SPF Mobilités et Transports
SZ d.o.o Slowenian railways
THI Factory (Thalys)
Trenitalia SpA (FS Group - Italy)
UIC
UNIFE
VIA Rail
VR Group

Contributors

Acknowledgements. Also thanking the team that stood beside.

Includes UIC Energy saving taskforce and Energy & CO2 Sector Members.

Diana	Bas an am	A .1:5
Diego	Jimenez	Adif
Christian	Gerster	Alstom
Richard	French	Alstom
Giampaolo	Chieco	Alstom
Robic	Gwenael	ALSTOM TRANSPORTATION
Dyre Martin	Gulbrandsen	Bane NOR SF
Audun	Ingebrigtsen	Bane NOR SF
Arnaud	Marenne	CFL
Manuel	Kirchen	CFL
Marc	Valette	CFL Miltimodal
Paul	Hodgson	CFL Cargo
Etienne	Harkemanne	CFL Multimodal
Carlos	Mendes	CP
Zhixue	ZHANG	CRRC-ZIC
Takuya	Yamawaki	East Japan Railway Company
Paolo	Castiello	FS
Bart	Van der Spiegel	Infrabel
Patricia	Grobben	Infrabel
Eungyeong	JEON	KORAIL
SOOYEON	LEE	KORAIL
Lynn	LEE	KOREA RAILROAD CORP. (KORAIL)
Adél	Kispéter	MAV
Alan	Bullock	Network Rail
	Collins	
Denzel	-	Network Rail
Jo	Lewington	Network Rail
Charlotte	Dekeyser	NMBS
Niels	Vercaemer	NMBS
Katarzyna	Ramut-Waz	PKP Energetyka
Gerald	Olde Monnikhof	ProRail
Santos	NUNEZ DEL CAMPO	RENFE
IRENE	DONAIRE VILLA	RENFE
Claudio	SPALVIERI	RFI S.p.A.
Massimo	CENTRA	RFI S.p.A.
Johannes	Estermann	SBB
Matthias	Tuchschmid	SBB
Christoph	Hinze	Siemens Mobility GmbH
Christian	Courtois	SNCF
David	Fogelberg	SNCF
Grégoire	Mory	SNCF
Astrid	PARAKENINGS	SNCF
GUEUDAR DELAHAYE	christophe	SNCF voyageurs
Tomaz	Stor	SZ d.o.o Slowenian railways
Björn	Allebrand	Trafikverket
Piero	Petruccioli	Trenitalia
Laurent	Frechede	UIC
Palma	Jesus	UIC
Lucie	Anderton	UIC
Philippe	Stefanos	UIC
Christian	Chavanel	UIC
	HASSOUN	
Christine		UIC
Rebecca	Rees-Ewald	UIC
Ludovic	Wattignies	UIC

Nicolas	Furio	UNIFE
Francoise	Granda	VIA Rail
Elli	Ikonen	VR
Maroš	Anderák	ZS Cargo
Ľubomír	Hradiský	ZSSK

Survey details

Table 7: Items in the survey covering railway system consumption

Item	Sub-level	Sub-level	Sub-level
Infrastructure	B 1 B 1 B 1		
	Public accessibility	Dessenger information systems	
		Passenger information systems Heating, cooling, ventilation (aside from station energy consumption)	
		Fuel-powered heating, cooling, ventilation (aside from station energy consumption)	
		Conveyor systems (escalators, elevators, conveyor belts)	
		Lighting	
			Platform access lighting
			Track lighting (e.g., level crossings)
	Train control systems	Cignolling	
		Signalling Switch/point heating	
	Telecommunications	Fuel (gas)-powered switch heating	
	1 ciccominanicationic	Power supply systems	
		Railway communication	
			Critical telecoms (redundant/essential apps) Non-critical telecoms
		ICT/data	
		Business/staff communication	
	Tracks and technical centres		
		Tracks (e.g., lighting for staff) Tunnels	
		Power for power plants	
		Power for electrotechnical subsystems	
		,	Frequency converters Substations
		Depots/sidings (outside maintenance workshops)	
		Other technical equipment	
Real estate	Large stations		
	Large stations Medium and small stations Operational buildings Offices		
Passenger transport			
	Electric traction power Distribution losses		

	Fuel-powered traction power
	Fuel provision for traction
	Maintenance workshops
	Service facilities
	Ticket vending machines
E	
Freight	
	Goods management
	Electric traction power
	Distribution losses
	Fuel-powered traction energy
	Fuel provision for traction
	Maintenance workshops

Table 8: Items in the survey covering traction system energy consumption

ltem	Sub-level	Sub-level	Sub-level	Sub-level
[Freight] Goods				
management/shunting				
[Diesel] Fuel				
provision/distribution				
(energy lost for				
supplying)				
Traction energy input				
	Losses at			
	substations			
	Energy lost through	-		
	transmission			
	Traction power	-		
		Train		
		movement		
			Friction/rolling	
			resistance	
				Wheels/track
				Other
			Aerodynamic/air	
			resistance	
				Train profile
				Bogies/underbody
				elements
		Losses in		L
		traction		
		systems		
			Choppers/inverters	
			-	Fans
			Motors	
				Fans
			Motor to	
			axle/gearbox	
		Auxiliary		
		systems		
			Lighting	

		Recuperation from brakes	Heating, ventilation and air conditioning Air Compressors AC/DC - DC/DC auxiliary converters Plugs/screens	
	Recuperation from brakes (after use			
	and losses from the train)			
Recuperated energy				
(after losses from the				
train and trackside				
supply system)				

Appendix 2 MÁV data

ltem	Sub-item	Sub-item	Sub-item	GWh/a	Share (%)
Infrastructure				76.31	4.0%
	Public accessibility			39.1	51.2%
	Public accessibility	Passenger information systems		N/A*	-
	Public accessibility	Heating, cooling, ventilation (beside	the consumption of stations in real estate)	N/A**	-
	Public accessibility	Fuel-powered Heating, cooling, ven	tilation (beside the consumption of stations in real estate)	N/A**	-
	Public accessibility	Conveyor systems (escalators, elev	vators, conveyor belts)	N/A**	-
	Public accessibility	Lighting		39.1	100.0%
	Public accessibility	Lighting	Platform access lighting	37.15	95.0%
	Public accessibility	Lighting	Track lighting (eg: level crossing)	1.95	5.0%
	Train control systems			19.28	25.3%
	Train control systems	Signalling	8.35	43.3%	
	Train control systems	Point heating	10.85	56.3%	
	Train control systems	Fuel (gas)-powered Point heating		0.08	0.4%
	Telecommunication			8.77	11.5%
	Telecommunication	Power supply system		2.63	30.0%
	Telecommunication	Railway communication		4.64	52.9%
	Telecommunication	Railway communication	Critical telecom (redundant/essential apps)	3.712	80.0%
	Telecommunication	Railway communication	Non-critical telecom	0.928	20.0%
	Telecommunication	ICT / Data		1.5	17.1%
		Business / Staff communication		N/A**	0.0%
	Tracks & Technical centres			9.16	12.0%
	Tracks & Technical centres	Tracks (eg: lighting for staff)		4.63	50.5%
	Tracks & Technical centres	Tunnels		0	0.0%
	Tracks & Technical centres	Power for power plants		0	0.0%

	Tracks & Technical centres	Power for electrotechnical subsystems		2.63	,	28.7%
	Tracks & Technical centres	Power for electrotechnical subsystems	Frequency converters	0		0.0%
	Tracks & Technical centres	Power for electrotechnical subsystems	Substations	2.63	J	100.0%
	Tracks & Technical centres	Depots / sidetrack (outside maintenance v	vorkshops)	0		0
	Tracks & Technical centres	Other technical equipment		1.9		20.7%
Real estate				220.	.256	11.5%
	Large stations			50.6	6	23.0%
	Medium and small stations			101.	.316	46.0%
	Operational buildings			11.0)1	5.0%
	Offices			57.2	27	26.0%
Passenger transport				12	02.312	62.7%
	Electric traction power			54	6.81	45.5%
	Distribution losses			45	.42	3.8%
	Fuel-powered traction power			29	3.982	
	Fuel provision for traction			31	6.1	26.3%
	Maintenance workshops			N/A	A**	-
	Service facilities			N/J	A**	-
	Ticket vending machines			N/J	A**	-
Freight				41	9.9	21.9%
	Goods management			0		0
	Electric traction power			30	8.53	0.735
	Distribution losses			21		0.05
	Fuel-powered traction energy	/		90	.37	0.215
	Fuel provision for traction			0		0
	Maintenance workshops			N//	A**	-
TOTAL				88	8.80	100.00

		Commut regional		Commut regional		Electric average	Commuter/ regional Diesel		Freight diesel	
Item	Sub-level	GWh/a	Share (%)	GWh/a	Share (%)	Share (%)	GWh/a	Share (%)	GWh/a	Share (%)

ction power			611.49	100.0%	1.45	100.0%		239.36	100.0%	61.80	100.0%
Train mov	ement		477.39	78.1%	1.16	80.0%	79.0%	160.09	66.9%	44.49	72.0%
	Friction/rolling resistance		29.29	6.1%	0.05	4.0%	5.1%	12.92	8.1%		
		Wheels/tracks	9.96	34.0%	0.02	50.0%	42.0%	5.84	45.2%	1.85	4.1%
		Other	19.33	66.0%	0.02	50.0%	58.0%	7.08	54.8%	2.03	4.6%
	Aerodynamic/ air resistance		77.88	16.3%	0.15	13.0%	14.7%	31.29	19.5%		
		Train profile	57.01	73.2%	0.12	76.9%	75.1%	15.96	51.0%	4.07	9.2%
		Bogies/ underbody elem.	20.87	26.8%	0.03	23.1%	24.9%	15.33	49.0%	4.29	9.6%
Losses in the tractio system	n		77.54	12.7%	0.04	3.0%	7.8%	15.53	6.5%	4.90	7.9%
	Choppers/inver	ters	40.78	52.6%	0.01	25.0%	38.8%	7.54	48.6%	1.20	24.4%
		Fans	9.35	22.9%	0.00	2.0%	12.5%	1.80	23.9%	0.48	40.1%
	Motors		17.33	22.4%	0.01	25.0%	23.7%	0.10	0.7%	1.46	29.9%
		Fans	3.38	19.5%	0.00	10.0%	14.7%	0.02	21.5%	0.39	26.3%
	Motor to axle/g	earbox	19.43	25.1%	0.02	50.0%	37.5%	7.88	50.8%	2.24	45.7%
Auxiliary systems			56.56	9.3%	0.25	17.0%	13.1%	63.75	26.6%	12.41	20.1%
	Lighting		7.49	13.2%	0.04	15.0%	14.1%	7.29	11.4%	1.85	14.9%
	Heating, ventila conditioning	ation and air	26.14	46.2%	0.16	65.0%	55.6%	29.85	46.8%	3.94	31.8%
	Air compressor	s	15.05	26.6%	0.02	10.0%	18.3%	10.30	16.2%	5.79	46.6%
	AC/DC - DC/D0 converters	C auxiliary	4.04	7.1%	0.01	5.0%	6.1%	15.12	23.7%	0.69	5.6%
	Plugs/screens		3.84	6.8%	0.01	5.0%	5.9%	1.18	1.8%	0.14	1.1%
Recupera	tion from brakes		-49.99	-8.2%	-0.27	-18.4%	-13.3%		0.0%		
cuperation from b	orakes (after use a	nd	-43.10	-7.0%	-0.23	-16.0%	-11.5%		0.0%		

Appendix 3 Detailed analysis of innovative solutions and TSI compatibility

Appendix 3.1: Rolling Stock

ENERGY SAVING	CONSTRAINTS	IMP	IMPACT										
MEASURE	,	ON T	N TSI REGULATIONS										S
	CHALLENGES,	(X =	a = TO BE ASSESSED										
	OR LESSONS	Y = 1	[ΜΡΑΟ	CT ON	TSI								
	LEARNT	N= N	= NO IMPACT ON TSI)										
		EN	IN	LO	WA	NO	SR	СС	PR	OP	ТА	TA	-
		Е	F	C &	G	Ι	т	S	м	E	Р	F	
				S									

	I		 		r	r	 - Eur	ope`s R	ail	1	1
		Key: X: additional									
		information is									
		needed									
		Y (Yes): this innovative solution could have an impact on a TSI. An explanation is given in column P. N (No): the innovative solution has no impact on a TSI. The TSI does not prohibit the solution, or the TSI explicitly allows the solution to be implemented. An explanation is given in the last column. A blank box means N/A									
ROLLIN	NG STOCK					•	•		•	•	
5.1.2	Insulated gate	Hardware		Х			Х				
	bipolar transistor										
	(IGBT) traction	have an impact									
	Wideband	on other systems									
	electronic power	like odometry,									
	semiconductors	train protection									
	that can replace										

-		T		1			=	ope`s R i	ail	1	,
	silicon-based	systems,					_01	-p			
	components	accreditation									
	(insulated-gate										
	bipolar transistor										
	(IGBT)										
5.1.4	Maximise	Sole use of	Ν	Ν	Х	Х	Х		Х		The ENE
	braking energy	regenerative									and
	recovery Prioritise	braking and the									LOC&PAS
	regenerative	possibility of									TSIs ask for
	braking over other	feeding back the									regenerative
	braking systems,	regenerated									braking.
	and give haptic	energy into the									Infra has to
	feedback regarding	grid may be									accept this
	maximum braking	limited in some									energy and
	efficiency to drivers	countries									use it by any
											means
											possible.
											Exception if
											the power
											supplier
											refuses it

Europo's 2pil	

-	-		-	1			= ur	ope`s Ri	all		
5.1.5	Dry transformers		Ν		Ν		_0.	1	(*		Product
											standard to
											be applied.
											Generally,
											voluntary
											domain, for
											infra, dry
											type
											transformers
											in 25kV
											50Hz have a
											higher
											impedance.
											Has this
											been
											studied?
5.1.6	Heat pumps for	The complexity	Ν		N						
	enhanced HVAC	HVAC systems									
	efficiency	makes it hard to									
	Replacing heating	implement for									
	with the most	rolling stock									
	efficient heating										
	system: heat										
	pumps										

	1	1	1	<u>т г</u>	 1	- Eur	ope`s <mark>R</mark>	ail —		1
5.1.7	Smart/automate	Education of	Ν	X						Check in
	d heating,	staff								LOC&PAS
	cooling and									TSI if
	ventilation									passenger
	(HVAC)									and driver
	Automatic HVAC									comfort
	adjustment to									requirement
	coach CO2 levels									s are
	Automatic HVAC									fulfilled
	adjustment to									
	coach thermostats									
	Automatic HVAC									
	adjustment to									
	weather data and									
	forecasts									
5.1.8	Lighting system		N	N						
	upgrades									
	Implement LEDs in									
	carriages/coaches									
5.1.9	Aerodynamic	In the equation	N	N						This solution
	efficiency of	F= a+bv+cv2,								reduces
	rolling stock	where c (drag								energy
	Improve high-	coefficient)								consumption
	speed train fairings	increases with								
	to facilitate airflow	the squared								

				 	= ur	ope`s <mark>R</mark>		
	in order to reduce	velocity (v) is a			01	-p		
	the impact of air	priority to be						
	resistance on	worked on						
	rolling stock							
		In terms of air						
		penetration, the						
		aerodynamic						
		wake of the train						
		is an important						
		issue (the Davis						
		coefficients, a, b,						
		c are constants						
		that are found						
		by analysing the						
		train dynamics,						
		and relate to the						
		static resistance,						
		rolling resistance						
		and						
		aerodynamic						
		resistances						
		respectively)						
5.1.1	Hydro-	Used in most	Х					Potentially
0	elastomeric axle-	long-distance						no impact
	guide bearings	railway coaches						on TSIs, to

	-		 			 =r	ope`s R i	ail		
	Hydro-elastomeric	in Switzerland,				_01	opeon	arc.		check in
	axle-guide bearings	that don't have								LOC&PAS
	for double-sided	active axle-								TSI on the
	use in axle-guide	guiding systems.								chapter
	bearings of rail	Even regional								dedicated to
	vehicles	EMUs are being								wheels/axles
		fitted with this								
		technology, due								
		to the benefit of								
		having a lower								
		"train-path								
		price"								
		•								
5.1.1	Thermal	Windows of		Х						Potentially
1	efficiency and	rolling stock								no impact
	insulation of	have to be								on TSIs, to
	rolling stock	replaced, the								check in
	Improving the	insulation needs								LOC&PAS
	capacity of rolling	to be adapted								TSI on the
	stock to retain heat	and fitted to								chapter
	or cold generated	existing stock.								dedicated to
	by HVAC systems	Both can be								passenger
		carried out								comfort
		during								
		maintenance								
		work								

5.1.1	Weight and	New	vehicle		Ν			ope`s R	ail		Unless the
2	capacity of	authoris	ation								max weight
	rolling stock	needed									per axle is
	Higher capacity and										not reached,
	lighter rolling stock										which is the
	(via procurement										case here
	whenever the										
	refurbishment										
	cost/benefit ratio is										
	low										

Appendix 3.2: Operations

ENERGY	CONSTRAINTS	IMPA	ACTS										COMMENT
SAVING	, CHALLENGES,	ON T	SI RE	GULAT	IONS								S
MEASURE	OR LESSONS	(X =	TO BE	ASSE	SSED								
	LEARNT	Y = I	ΜΡΑΟ										
		N= N	IO IMI										
		EN	IN	LO	WA	NO	SR	CC	PR	ОР	TA	TA	
		E	F	C &	G	I	т	S	М	Е	Ρ	F	
				PAS									

						C				
		Key: X: additional information is needed Y (Yes): this innovative solution could have an impact on a TSI. An explanation is given in column P. N (No): the innovative solution has no impact on a TSI. The TSI does not prohibit the solution, or the TSI explicitly allows the solution to be implemented. An explanation is given in the last column. A blank box means N/A				- .	rope`s i	ail		
OPERA	TIONS									
5.2.1	Using the most efficient trains for operations Favouring the use of rolling stock with lower consumption	The decision to pick one type of rolling stock over another can be based on: • Traction type (known	N	Ν						This is a general table. Naturally, new trains are more efficient Refurbishing

					-		-	=,,	rope`s 🤉	ail			
id/or lower	inherent							_0					and using
tal mass													older trains
	according to the												allows a
	infrastructure												train's
	- Known												lifespan to
													be increased
	-												Allowed by
													the TSI
	-												unless their
													requirements
	-												are fulfilled
	data, see 5.2.6)												
o-driving –	Education of	Ν	Х	Ν				Х		Х			The impacts
ving traction	train drivers												on the TSI
nergy	Adapted												regulations
Reducing the	timetables												concern
ergy used for	Connected DAS												Connected-
e train traction	(Driver Advisory												DAS From
' giving													the ENE
propriate													TSI's point
structions to													of view:
ivers													excellent
Drivers training													
eco-drive with													
ecific driving													
urses													
	o-driving – ving traction ergy educing the ergy used for e train traction giving propriate tructions to vers privers training eco-drive with ecific driving	efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers • Adapted timetables • Connected DAS (Driver Advisory System) propriate tructions to vers privers training eco-drive with ecific driving	efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers • Adapted timetables • Connected DAS (Driver Advisory System) propriate tructions to vers privers training eco-drive with ecific driving	efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers • Adapted timetables • Connected DAS (Driver Advisory system) propriate tructions to vers privers training eco-drive with ecific driving	efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers • Adapted timetables • Connected DAS (Driver Advisory giving propriate tructions to vers privers training eco-drive with ecific driving	al mass efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers • Adapted timetables • Connected DAS (Driver Advisory giving propriate tructions to vers vrivers training eco-drive with ecific driving	al mass efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) o-driving – ving traction ergy ergy used for e train traction giving propriate tructions to vers wrivers training eco-drive with ecific driving	al mass efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers • Adapted timetables • Connected DAS (Driver Advisory giving propriate tructions to vers rivers training eco-drive with ecific driving	d/or lower al mass efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) o-driving – • Education of train drivers • Adapted timetables ergy used for e train traction giving giving propriate tructions to vers privers training eco-drive with ecific driving	d/or lower al mass efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers • Adapted timetables • Connected DAS e train traction giving propriate tructions to vers rivers training eco-drive with ecific driving	al mass efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers • Adapted timetables ergy used for e train traction giving propriate tructions to vers rrivers training eco-drive with ecific driving	d/or lower al mass efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of rtrain drivers ergy ergy used for etrain traction giving propriate tructions to vers rivers training eco-drive with ecfic driving	d/or lower al mass efficiency) according to the infrastructure • Known efficiency of a specific electric rolling stock (energy consumption data, see 5.2.6) • Education of train drivers ergy • Adapted timetables ergy used for e Connected DAS (Driver Advisory giving propriate tructions to vers rivers training eco-drive with ecfic driving

-		r	1	1		1	r	=	krope`s 7	lail	1	
	- Reducing train											
	speed in tunnels											
5.2.3	Driving		Ν		Ν							Seen from
	assistance											ENE point of
	tools, Driving											view:
	Advisory											excellent
	Systems (DAS)											
	and Automatic											
	Train											
	Operation											
	(ERTMS/ATO)											
	Deployment and											
	implementation											
	of DAS/ATO											
	delivering driving											
	advice to drivers											
	or automated											
	train control:											
	• The first phase											
	is Standalone											
	DAS/ATO without											
	connection to											
		L										

	Traffic					=	urope`s	Rail		
	Management									
	Systems									
5.2.3	Driving	Implementation	X	X		X		Х	Potential	
	assistance	of C-DAS is							interaction	
	tools, Driving	dependent on a							on Traffic	
	Advisory	Member State							Managemer	nt
	Systems (DAS)	Infrastructure							System	
	and Automatic	Manager's ability							Could	
	Train	to handle the IM-							facilitate	
	Operation	side delivery of							real-time	
	(ERTMS/ATO)	harmonised C-							reschedulin	g
	Deployment and	DAS messages to							- ENE: chec	:k
	implementation	operators							that this	
	of DAS/ATO								traffic	
	delivering driving								manageme	nt
	advice to drivers								does not	
	or automated								create any	
	train control:								voltage	
	• Then								disturbance	es
	Connected								(clause 8 El	N
	DAS/ATO (C-								50388-1 an	
	DAS, C-ATO),								EN 50163),	
	which manage								but this ide	
	conflicts and								goes in the	

			 1	1		<u> </u>	rope`s 7	lail —		
	harmonise traffic									right
	flows at a system									direction
	level and to be									
	built into system-									
	wide train									
	schedules									
			 							ENE
5.2.4	Partial	Ν	Х							ENE:
	equipment									excellent,
	usage:									but avoid
	adaptation of									numerous
	equipment use									sudden
	according to									changes
	load/needs									which could
	Partial use of									affect
	traction engines									voltage
	according to load									stability
	(partial switch-									LOC&PAS:
	off when									check the
	coasting)									chapter on
										power
										consumption

			Г Г.		1		=0	rope`s 🔒	ail		
5.2.5.	Optimisation	Ν		X				•			LOC&PAS:
	of power										check that
	electronics										these
	Fine-tune										measures
	parameters for										will not lead
	the maximum										to harmonic
	efficiency, such										generation
	as the DC link										and voltage
	voltage or										disturbance
	magnetic flux										or instability
											-
5.2.6.	Using energy	Ν		N			Х		Х		 Potential
	measurement										interaction
	data										with Traffic
	The data output										Management
	from an EMS is										System for
	valuable for										enhanced
	analysing a train										paths fitted
	run's driving										with energy
	efficiency.										savings
	Whether it is to										- ENE: no
	improve the eco-										influence on
	driving strategy										energy
	(specific to a										metering
	route or not), or										shall be
											verified

					=0	rope`s 🔒	all		
	enhance driving								
	advice for a DAS.								
	Exact optimal energy consumption and punctuality can be found by analysing data from multiple train runs.								
5.2.7.	Fine tuning train services Adjusting and reducing train services in a way that is hardly felt by passengers: • ATO and DAS for the most efficient traction energy use, avoid train stops using information from traffic management	Ν	N		X		X		• Potential interaction with Traffic Management System for enhanced paths fitted with energy savings

	 			-11	rope`s 🔒			
See Driving				_0	lobe o l	circ		
assistance tools								
(DAS & ATO)								
Adjust the								
number of								
coaches/wagons								
during off-peak								
hours to the								
expected								
attendance/load								
Reduce the								
number of stops,								
by skipping (low								
attendance)								
stations for								
frequently								
stopping trains								
Develop a								
"stop on request"								
system (DE: Halt								
auf Verlangen);								
FR: arrêt à la								
demande)								
•								
Asynchrono								
us train								

		 			_	rope`s F			
	acceleration to				_0	iope s i	an		
	avoid energy use								
	during peak								
	hours and reduce								
	losses								
	(timetabling,								
	power								
	management)								
	A train's								
	acceleration								
	synchronised								
	with another								
	train's braking								
	(timetabling,								
	power								
	management)								
5.2.8	Efficient								Potential
	heating,								interaction
	ventilation,								with Traffic
	and air								Management
	conditioning								System
	(HVAC)								
	management								
	• •Schedule and								
	adapt HVAC								

				 	-		-1	rone's 🗆		
	strength to									
	weather									
	condition									
	data/forecasts									
	and to									
	timetabling (e.g.,									
	eco-stabling)									
5.2.9.	5.2.9. Eco-	Education of	Ν	Ν						ENE and
	stabling, eco-	the drivers								LOC&PAS:
	parking									positive
		• Time required								aspects, no
		to ready a train								constraints
		should not be								from the
		underestimated,								TSIs
		especially when a								
		train is in								
		hibernation								
		mode or energy-								
		optimised								
		stabling. Some								
		systems which								
		were off need to								
		start/reboot and								
		carry out a test								
		(ETCS, BRAKE,								
		NBU etc.).The								
					1					

							rope's 7	2ail 📃		
		planned parking				0	iope o i			
		length first needs								
		to be assessed								
		before the train is								
		eco-parked								
		eco-parkeu								
5.2.1	Interval		Ν	Х						LOC&PAS: to
0	operation of									be checked
	traction									if the RAMS
	coolant pumps									parameters
	during stabling									of the train
	Turn off traction									will remain
	converter coolant									fulfilled
	pumps and									ENE:
	ventilation during									positive,
	stabling.									check that
	_									harmonic
										emission
										level while
										stabling will
										stay fulfilled

Appendix 3.3: Infrastructure

ENERGY SAVING MEASURES	CONSTRAIN TS, CHALLENGES OR LESSONS LEARNT	ON 1 (X = Y = 1	TO B	EGULAT E ASSE CTS ON PACT (LOC	SSED TSI		SR	CC	PR	ОР	ТА	TAF	COMMENTS
		E	F	& PAS	G	I	T	S	M	E	P		
	Key: X: additional information is needed Y (Yes): this innovative solution could have an impact on a TSI. An explanation is given in column P. N (No): the innovative solution has no impact on a TSI. The TSI does not prohibit the solution, or the												

1			r			r	1	 Europe	is Rail		r	· · · · · · · · · · · · · · · · · · ·
		TSI explicitly allows the						.				
		solution to be										
		implemented. An										
		explanation is given in the last										
		column.										
		A blank box means										
		N/A										
ENERGI	on Infrastructure											
5.3.1	Railway layout and			X								
	infrastructure											
	performance											
	Track curves											
	adjustments to reduce											
	friction and maintain											
	speed											
5.3.2	Electrification: increased											See also
	efficiency, renewable											Renewable energy
	energy integration and											supply (5.3.15)
1			1	1	1					1	1	
	smart management											

		1		1	1	r :	∓∪rope	s rail	1	1	1	
5.3.3	Supply structure/ Neutral sections	Y										ENE: any new neutral section design shall be assessed against the ENE TSI and EN 50388-1 and 50367
5.3.4	Infrastructuremanager informationforrailwayundertakings:increase the operatorawareness regardingmore efficient drivingand consumption at astandstillData and informationsharing between IMs andRUson:• Energy consumptionpatterns, anomalies,potential improvements	Y	Y				X		X			

-	1					 Europe	s Rail		
	Cooperation for								
	strategies on timing								
	energy supply with								
	traffic management and								
	stabling/maintenance/o								
	peration times								
	• CDAS								
5.3.5	Smart control of		N	Ν					Fully compatible
	power supply and on-								with the ENE and
	demand supply								LOC&PAS TSIs
	(Automatic) switching								
	off of transformers to								
	avoid losses, when no								
	train is present on								
	feeding the section								
5.3.6	Increased voltage for	Used in Japan	Ν	Ν					ENE: already in
	better transmission	and France							service and TSI
	efficiency	since the 70's:							compliant
	Higher voltages to	high maturity							LOC&PAS: the
	reduce transmission								traction unit is not
	losses in the overhead								influenced by this
	contact line								
						L			

		1	N N ENF: all these					
5.3.7	Flexible Traction	These	Ν	N		X		ENE: all these
	Energy Supply	solutions need						systems are TSI
	 Reduce transmission losses Reduce peak powers Improve voltage stability and power quality By replacing the conventional transformer substation and through integration with urban stakeholders (ESS + reversible substations + Energy Management system logic) 	to be studied in conjunction with the impact on traction units and related functioning within the traction power supply facilities. Impact on signalling systems shall also be verified						compliant unless they allow to remain within EN 50163 voltage boundaries and that voltage stability is not affected (EN 50388-2)
5.3.8	Installing energy recovery systems on DC railway lines o Reversible substations within a DC power supply system contribute to a higher use use of the energy the energy		N					Potential interaction with Traffic Management System for enhanced paths fitted with energy savings

			Europe's Rail	
regenerated by trains				- ENE TSI
during brake				suggests it.
applications, as most of				Compliance with
the braking energy is				ENE TSI
captured, which can				
reduce energy				
consumption by between				
7% and 15% depending				
on the line, the services,				
and the number of				
reversible substations on				
the line				
The shell de la service				
o Trackside energy				
storage (see solution				
"Trackside energy				
storage")				
	I I	1 1 1		

						-urope	s Rall		
5.3.9	Recovered braking	Y	Х		-	Europe X		Х	 Potential
	energy: optimal								interaction with
	management								Traffic
	Synchronisation of								Management
	braking energy returned								System for
	to the grid with the grid								enhanced paths
	or with public grid								fitted with energy
	demand.								savings
									-ENE: not very
									clear, care to be
									taken with the
									conditions needed
									to brake by
									regenerative
									braking
									-LOC&PAS: this
									shall be
									compatible with
									the control
									command of the
									traction unit.

			 0			Europe	s Rail		
5.3.10	Avoiding and	Ν	Ν		-	10.000			These
	reducing rotating								components are
	converters losses								not covered by
	Rotating converters								the ENE, nor the
	have a 20-30% loss								LOC&PAS TSI
	ratio.								
	By increasing the								
	voltage of a rotary								
	converter, the initial								
	base losses due to								
	operation at a specific								
	voltage are avoided								
5.3.11	Lighting: efficiency	N							
	and management								
	 Intelligent control 								
	Replace old lighting								
	with low-pressure								
	sodium or LED lamps								

			-		uropei		-	
5.3.12	Switch/point heating	Ν		l Ť	- opo			 Potential
	system management,							interaction with
	optimisation and							Traffic
	upgrading							Management
	 Optimising switch 							System
	heating controls to							Not within the
	reduce energy							scope of ENE
	consumption without							unless these
	affecting safety and							devices do not
	availability. This							generate
	commonly means							harmonics or
	upgrading to more							disturbances on
	efficient, automated and							catenary voltage
	electric heating							
	(avoiding unnecessary							
	heating), and avoiding							
	the use of gas							
	 System management 							
	scheduled according to							
	weather forecasts to							
	eliminate excess energy							
	consumption from							
	heating							
	 Energy efficiency for 							
	switch heating can be							
	ensured through a							

		1				Europe	s Rail		1
	proper power								
	management of the								
	electronic control								
	cabinets/power units								
5.3.13	Tunnels				X				To be assessed
5.5.15	runneis				^				with TSI Safety In
									Railway Tunnels
									Raiway Turincis
5.3.14	Measurement	Ν							Not within the
	equipment								scope of the ENE
	Monitoring the energy								TSI
	consumption of								
	electrotechnical systems								
	and subsystems to								
	understand consumption								
	patterns, identify								
	anomalies and areas								

					-	Furona			
	with energy saving								
	potential								
5.3.15	Renewable energy	N							
	supply								
	Increasing the share of								ENE: unless the
	renewable energy fed								power input does
	into systems to reduce								not interact with
									the trains, it is not
	dependency to the								a matter of
	energy market (prices).								interoperability.
	Renewable sources can								But, check that the
	be intermittent and								
	therefore not								provisions against
	systematically usable for								electric shocks,
	permanent								the detection of
	consumption, such as for								faults etc, are
									correctly fulfilled
	traction. Different ways								Also check that the
	of consuming this								voltage limits
	intermittent energy are								described in the
	to:								
	- Send the energy								EN 50163 are
	flow to the traction								followed
	substation and decrease								

					Europe				
the power use from the				-	corope	ortait			
main grid. This is									
possible if traction units									
consume									
- Store it (batteries,									
chemical, flywheel, H2)									
for use at the best									
possible time (see									
above)									
- Send it to the									
mains, which acts as a									
overall "reservoir" for									
electricity customers									
,									
- Directly consume it									
onsite for stations,									
auxiliary installations,									
via a storage system									

E 2 16	Tup el/eide en every	Ν	∓urope`s Rail	ENE: it depende
5.3.16	Trackside energy	N		ENE: it depends
	storage			on the way the
	Stationary energy			energy is used or
	storage systems			how it is
				connected to the
				catenary, for
				whether it is the
				case or not

				 	 — ∓urope		
5.3.17	Medium Voltage	The ENE TSI	Y		10.000		Currently not
	Direct Current	does not yet					accepted by the
	electrification system	accept 9kV DC					TSIs and
	 Medium voltage direct 						standards.
	current (MVDC)						It would require
	electrification system to						an innovative
	reduce transmission						solution process
	losses, copper use						after a proof of
	 Increase OCL voltage 						concept has been
							approved.
							If experiences and
							initial assessments
							are good, then a
							new electrification
							system could be
							integrated into the
							standards.
							Research and
							development to
							be carried out
							with a systemic
							view, RST and
							ENE

Appendix 3.4: Buildings

ENERGY SAVING MEASURE	CONSTRAINTS , CHALLENGES, OR LESSONS LEARNT	ON 1 (X = Y = 3	TO BI	E ASSE) NO	SR	CC	PR	OP	ТА	ТА	COMMENT S
		E	F	C & PA S	G	I	т	S	м	E	P	F	
	Key: X means that additional information is necessary Y (Yes) means that this innovative solution could have an impact on the TSI. Explanation is given in column P. N (No) means that the innnovative solution has no impact on the TSI: the TSI requirement does not forbid the innovation, or the STI explicitly allows the implementation												

1		of the innovation.		1	1	<u> </u>	ope`s R	ail		
		Explanation is given								
		in last column. Blank box means								
		N/A								
BUIL	DINGS									<u> </u>
5.4.	HVAC: efficiency					 				
1	and management									
-	Using intelligent									
	HVAC control for									
	buildings									
	Setting lower									
	heating/higher									
	cooling									
	temperatures									
	Upgrading									
	equipment to a									
	more efficient									
	system (heat									
	pumps)									
									1	

	1 a.a	<u>г</u>	1	I		= Ur	ope`s R	ail		
5.4.	Harvesting solar						-			
2	power									
	Install solar panels									
	on suitable building									
	surfaces									
5.4.	Practices for									
3	saving energy in									
	stations,									
	buildings, and									
	workshops									
	Management and									
	fine-tuning of the									
	temperature and									
	lighting									
	Increase heating									
	efficiency									
	Automated switch									
	off/hibernation									
	systems for lighting									
5.4.	Drone use for									To be
4	solar panel									considered
	performance									in
	inspections and									conjunction
	-									with the
										UIC's

	I	Europe`s Rail												
	HVAC loss													current work
	detection													on national
														and
														European
														drone
														regulatory
														frameworks
5.4.	Monitoring and													
5	benchmarking													
	energy													
	consumption in													
	buildings													
5.4.	Switching to LED													
6	lighting													
5.4.	Escalator,													
7	elevator, and													
	conveyor system													
	efficiency													
	To be fitted or													
	upgraded with													
	energy efficient													
	drives and be													

	1													
	intelligently									-61				
	controlled													
5.4.	Contractual													
	Contractual													
8	energy													
	commitments and													
	auditing for													
	concessions/shop													
	S													