Work Area 3.3 Smart Maintenance Closure Presentation

09.12.2020

Harald Ackermann (DB) Jürgen Ernst (DB)

@Shift2Rail_JU
#Horizon2020

Work Area Information

Huddersfield

Title	Smart Maintenance	Title	Budget	Timeline	Objective	Outputs / demonstration
Total Cost	1.520 k€ (CFM+OC)				 Development of a Smart maintenance concept for the whole railway system Development of the 	 Smart maintenance concept for the whole railway system
Funding Participants Contribution	940 k€	IMPACT-2 WP6	1.050 k€	09/17 - 12/19	 methodology for condition based maintenance (CBM) Application for some 	 CBM results for passenger trains Normative input for
Timescales	Sep 2017 – Dec 2019				 Normative input for standardisation 	standardisation
Participants	Ansaldo Bombardier CAF	SMaRTE Smart Maintenance	470 k€	09/17 - 10/19	Development and integration of predictive tools for current and future condition of train passenger components	Techniques to Support the Implementation of Smart Rolling Stock Maintenance
	DB Siemens SNCF TCDD University of					

Work Area WA3.3 Smart Maintenance

Objectives of Work Area	Торіс	MAAP Tasks	Projects
 Paradigm shift to condition-based maintenance Pushing the supervision of infrastructure by means of measuring devices within the vehicle and vice versa 	Development of a Smart maintenance concept for the whole railway system	(2) Smart maintenance concept	IMPACT-2 WP6
 Less down time and increased availability of railway assets due to better prediction of component failures Reduced maintenance costs due to better planning and coordination of maintenance activities 	Development and application of the methodology for condition based maintenance (CBM)	 (1) Scope definition (3) Data selection (4) Data analysis and pattern recognition (5) Integration into maintenance plan 	IMPACT-2 WP6 SMaRTE
 Pre-standardisation for diagnostic data of vehicle and infrastructure components 	CBM data source and structures as well as normative input for standardisation	(6) Information identification(7) Standardisation	IMPACT-2 WP6

Collaboration Activities

Work Area Task	Activity	Project
(2) Smart maintenance concept	 Matching CBM-concept with CBM for traction components CBM for infrastructure components CBM for freight waggons and locomotives 	PINTA IN2SMART FR8RAIL
(4) Data analysis and pattern recognition	 Providing diagnostic train data to the SMaRTE project Development of CBM algorithmen by SMaRTE Use of the SMaRTE results for the application of CBM 	SMaRTE
(6) Information identification	Matching CBM concept and data flow with the Intelligent Asset Management system developed in IP3	IN2SMART
(7) Standardisation	Integration of the standardisation activities concerning Smart Maintenance into the rolling standardisation plan	IMPACT-2 WP5

Overall Smart Maintenance Concept

The four quadrants of smart maintenance

TD 3.6 TD 3.7 TD 3.8 Continiuous track monitoiring

Infrastructure monitors itself

Documentation in IMPACT-2 Del. 6.5 Smart maintenance concept

Shift2Rail

Development and Application of CBM Methodology

Steps for development and implementation of Condition based maintenance (CBM)

The methodology was applied for some vehicle modules (Doors, Air compressor, line circuit breaker)

Documentation in

- IMPACT-2 Del. 6.4 CBM results for rail vehicles
- SMaRTE Del. 2.2 Techniques to Support the Implementation of Smart Rolling Stock Maintenance

Smart Maintenance Vision

Smart Maintenance Reality

Pre-Standardisation of CBM data

Two tasks were carried out to support the standardized data exchange

- Analising and the required data and data structure for CBM from different applications/ projects (IMPACT-2 Del. 6.2)
- Normative input for standardisation (IMPACT-2 Del. 6.3)

Example of vehicle data structure

Product	group st	ructure	Function	groupe sti	ructure	(Condition co	on structure				
MPG	SPG	SSPG	ISI- category- group	ISI-part- category	ISI-Part- Name	Condition code	Signal	Grading / unit	Position code	Installation group	Installation point	Slot
N	В	006	N	SS	CRV	14-022	control command	Locked/ unlocked	2-8-0	Side wall R	Right vehicle side Door	All doors
Doors, entrances	External doors	Door securing	Mechanical parts specifically	Locks	Door lock	22-015	Functional condition	Locked/ unlocked	2-8-110	Side wall R	Right vehicle side Door	Door 11
						10-002	damaged condition	faulty	3-8-140	Side wall L	Left vehicle side Door	Door 14
						13-001	error message	ls disturbed	3-8-260	Side wall L	Left vehicle side Door	Door 26

For the standardisation approach various additional steps for further development are conceivable, these are described in the deliverables. These steps may also be performed in parallel.

Exploitation of Results

The results of the work were presented in 2020 at the CCA and IP-SteCos as well as in the ED Program Board in Nov 2020

Topic/ Task	Outputs	Exploitation
Smart maintenance concept	Common maintenance concept for assets of rolling stock, infrastructure and CCS (IMPACT-2 Del. 6.5)	 Considering the concept in other S2R projects dealing with CBM Application by railway undertakings and infrastructure managers
CBM methodology and application	Methodology for application of CBM for some defined components (IMPACT-2 Del. 6.4)	 Application within other S2R projects dealing with CBM Application by railway undertakings and infrastructure managers
Data structure standardisation	Normative input for standardisation of CBM data structures (IMPACT-2 Del. 6.2 and 6.3)	 Continuation of the standardisation within the S2R project LinX4Rail (Conceptional Data Model) Standardisation of CBM data structures within European standards Considering in the future vehicle IT / TCMS (Project CONNECTA-3, Task 5.6)

Work Area Roadmap

Work Area Task	TRL	20	016		20	017		20)18		20)19		20	20		20)21		20	22	
Scope definition																						
Smart maintenance concetp																						
Data selection & fromating																						
Data analysis and pattern recognision																						
Integraion into maintenance plan																						
Information identification																						
Standardisation																						

Project	TRL	20	016	2017				2018				20	19	2020				2021					2022				
IMPACT-2	2																										
SMaRTE	2																										

Work area active
Complete project
On going project
Planned project

Project	Summary of Output
IMPACT-2 WP6	 Smart maintenance concept for the whole railway system CBM results for passenger trains Normative input for standardisation
SMaRTE Smart Maintenance	Techniques to Support the Implementation of Smart Rolling Stock Maintenance

